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ABSTRACT
Eye tracking is compelling for hands-free interaction with perva-
sive displays. However, most existing eye tracking systems re-
quire specialised hardware and explicit calibrations of equipment
and individual users, which inhibit their widespread adoption. In
this work, we present a light-weight and calibration-free gaze esti-
mation method that leverages only an off-the-shelf camera to track
users’ gaze horizontally. We introduce pupil-canthi-ratio (PCR),
a novel measure for estimating gaze directions. By using the dis-
placement vector between the inner eye corner and the pupil cen-
tre of an eye, PCR is calculated as the ratio of the displacement
vectors from both eyes. We establish a mapping between PCR to
gaze direction by Gaussian process regression, which inherently in-
fers averted horizontal gaze directions of users. We present a study
to identify the characteristics of PCR. The results show that PCR
achieved an average accuracy of 3.9 degrees across different peo-
ple. Finally, we show examples of real-time applications of PCR
that allow users to interact with a display by moving only their
eyes.

Categories and Subject Descriptors
H.5.m [Information Interfaces and Presentation (e.g. HCI)]:
Miscellaneous; I.5.4 [Pattern Recognition]: Applications—Com-
puter Vision

General Terms
Human Factors, Measurement

Keywords
Calibration-free, Eye Tracking, Vision-based, Gaussian Regression, 
Gaze-based Interaction, Pervasive Displays

1. INTRODUCTION
Gaze is an attractive modality for pervasive displays, such as

gaze-contingent displays, digital advertisement, webpage analysis,
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Figure 1: PCR measure. (1) the system extracts inner eye cor-
ners and pupil centers from camera images for determining the
displacement vectors of left (dL) and right eyes (dR). (2) PCR
is defined as the ratio of the vectors from both eyes, describing
the degree of deviation from looking straight ahead. (3) we es-
tablish a mapping between PCR and gaze direction on a display
by Gaussian process regression.

etc. We are efficient at using our eyes, as we naturally look at ob-
jects that we are interested in, and we can move our eyes faster and
with less effort than other body parts. However, eye gaze is difficult
to harness for use in everyday activities. Many existing eye tracking
systems offer fine-grained detection of eye movements. However,
they are mostly designed for lab-based environments, where the
systems employ specialised hardware that requires additional illu-
mination (e.g. infrared) [2]. To achieve accurate detection, these
systems also require an explicit procedure for calibrating system
parameters to fit individual users. The calibration process hampers
natural interaction, as it is often cumbersome and unnatural [1, 3,
6]. Prior research proposed the use of visual saliency for auto-
calibration using monocular images, but the setup requires a chin
rest [5]. For gaze interaction to be useful in everyday scenarios,
we need a system that works out-of-lab and is readily available for
wide deployment.

In this work, we present a lightweight vision-based method that
detects horizontal gaze directions from camera images. We con-
tribute a calibration-free solution that requires no specialised hard-
ware, works across different users and is suitable for deployment in
uncontrolled environments. We propose Pupil-Canthi-Ratio (PCR),
a novel measure for tracking horizontal eye movements based on
the symmetry of our eyes. Our method uses the inner eye corner
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as the stable reference point and calculates a displacement vector
from the moving pupil center, and PCR is calculated as a ratio of
the displacement vectors of both eyes (see Fig. 1). The changes
of PCR describe the degree of users’ eye movements towards left
or right, and we leverage this characteristic for detecting horizontal
gaze directions.

We collect gaze direction data from 12 participants. We establish
a mapping between PCR and gaze direction by applying Gaussian
process regression on the data. Our results show that PCR achieves
an average accuracy of 3.9 degrees across different people. As an
added advantage, the minimal hardware requirement (i.e. a single
webcam) and the low computational power of our method make
PCR an ideal approach for wide deployment. We have developed
example applications to showcase the utility of the PCR measure.
Using this measure, gaze direction can be sensed in real-time and
applied for selecting or scrolling content on a large display.

2. CHARACTERISATION OF THE PUPIL-
CANTHI-RATIO

Our proposed system requires a single webcam for capturing im-
ages of users standing in front of a display. We employ Zhang et
al.’s image processing techniques for extracting eye feature points [7].
When the system detects a user’s face, it crops the left and the right
eye regions, and then the system extracts the inner eye corner and
the pupil center as feature points (see Fig. 1(1)).

From the extracted points, the system calculates a horizontal dis-
tance for each eye. Let Ci denotes the x coordinate of the inner eye
corner and Pi denotes the x coordinate of the pupil center, the hor-
izontal distance di is defined as di = |Ci − Pi|, where i ∈ {R,L}
represents the right and the left eye respectively. Using the horizon-
tal distances of the right and the left eyes, we define Pupil-Canthi-
Ratio (PCR) as a distance ratio as follow:

PCR =


−( dL

dR
− 1), if dL − dR > 0;

dR
dL
− 1, if dL − dR < 0;

0

(1)

A negative PCR indicates a gaze direction of looking towards left,
while a positive PCR indicates looking towards right.

PCR indicates how far a user’s gaze is averted from the center
of his visual field. In order to characterise PCR as an estimator for
horizontal gaze, we collected data from 12 participants in a con-
trolled study. The purpose of this study is to establish a mapping
relationship between PCR and the maximum range in visual angle
of horizontal gaze that we can cover with our eyes.

2.1 Data Collection
In our study, we used a 55 inch (121cm×68.5cm) display, with a

resolution of 1920x1080 pixels, mounted on a wall at the height of
120cm (lower bezel) above ground. To record eye images, we used
a Logitech HD Pro Webcam C920 with a resolution of 1280x720
pixels and a frame rate of 30Hz. The camera was mounted on a
tripod and positioned at a distance of 50cm in front of the display.

The study was conducted in an office environment under normal
lighting conditions. We recruited 12 participants (seven female),
aged between 19 and 33 years. None of them wore glasses during
the study. The participants stood at a distance of 1.2m in front of the
display (hence, the visual angles of the display are 53.5◦ horizontal
and 31.9◦ vertical). The captured eye image resolution was 80×70
pixels, which varied slightly across the participants.

The participants’ task was to look at eleven visual stimuli shown
on the display one at a time, in a randomised order. Each stimu-
lus consisted of a red circle with a diameter of 40 pixels (i.e. 1◦
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Figure 2: Mapping relationship between horizontal gaze direc-
tion and PCR. The solid line indicates an estimation of PCR for
400 values of visual angle θ evenly distributed in the interval
(−30◦, 30◦). The values are represented in the absolute form.
Pointwise 90% (left) and 80% (right) confidence intervals are
shaded. The error bars indicate the confidence interval around
the mean of all observations.

of visual angle) shown on a light grey background. The center of
the red circle was marked with a small black dot with a diameter of
5 pixels. The eleven locations were horizontally distributed across
the display (12cm apart), which corresponds to the horizontal vi-
sual angles of 26.6◦, 21.8◦, 16.7◦, 11.3◦, 5.7◦, 0◦, -5.7◦, -11.3◦,
-16.7◦, -21.8◦, and -26.6◦. The stimulus location changed every
five seconds. To minimise errors, images collected during the first
and the last second were discarded for each stimulus location.

2.2 Data Analysis Using Gaussian Process Re-
gression

We denote θ as the visual angle variable, which corresponds to
the horizontal gaze point on the display that a user is looking at,
and r as the observation value of PCR. We are interested in the
underlying mapping relationship of θ and PCR along the continu-
ous horizontal space. Since we obtained observations of discrete
points, we applied an interpolation method to investigate the map-
ping relationship.

For interpolation, we made an assumption that there is an un-
derlying Gaussian process that represents r = f(θ). We used the
GPML toolbox1 and computed the predictions using a Gaussian
process with 400 test input points evenly distributed on the inter-
val (−30◦,30◦). We used a covariance function that was a sum of
a squared exponential covariance term and independent noise. We
initialized the log of the hyper-parameters to be all minus one. All
the hyper-parameters were learned by optimizing the marginal like-
lihood. Thereafter, we made predictions using the learned hyper-
parameters. Figure 2 illustrates the results by showing the regres-
sion model and the mean and error bars of all observations. The
solid lines represent the estimation of PCR |r| (in absolute form)
for 400 values of visual angle θ ∈ (−30◦, 30◦). Figure 2 shows
two different confidence intervals (CI), 90% and 80% are shaded.
The red symbol in Figure 2 indicates the estimated mean across all
participants at different stimulus gaze points. The error bars indi-
cate the confidence interval around the mean of all observations.

2.2.1 Interpretation
As illustrated in Figure 2, the gradient level decreases around

the centre (|θ| < 6◦) and also as the visual angle becomes too large
(|θ| > 21◦); hence, PCR becomes less discriminative. PCR is most
discriminative at region corresponding to |θ| ∈ (6◦, 21◦). We ob-
served that with different confidence interval, it is possible to dis-

1http://www.gaussianprocess.org/gpml/code/
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tinguish the regions where the user is looking at. In the figure that
represents 90% CI, when |θ| ∈ (6◦, 21◦), the error bars for PCR
estimate do not overlap. When there is no overlap, the screen space
can be divided into regions. Hence, we can divide the total screen
space into 7 regions (3 regions from the left-half of the screen, an-
other 3 from the right-half, and 1 from the central region). Within
80% CI, when |θ| ∈ (6◦, 27◦), the error bars for PCR estimate do
not overlap. Hence, the screen space can be divided into 9 regions.

3. HORIZONTAL GAZE ESTIMATION US-
ING PCR

We assume a noisy observation model θ = f(r)+N(0, σ2
n) with

independent noise function. f(r) is assumed to be a zero-mean
Gaussian process with a squared exponential covariance function
k(r, r′) = σ2

f exp(−|r−r
′|2

2l2
) [4]. Given a set of labeled training

samples {(ri, θi)|i = 1, ...,M}, we wish to infer gaze visual angle
θ∗ for unseen PCR r∗ calculated from an input test eye image. The
parameters {l, σf , σn} were learned during the training process by
maximising the marginal likelihood. With this assumption, the best
estimate for θ∗ is:

θ∗ = k(r∗)ᵀ(K + σ2
nI)
−1θ (2)

where Kij = k(ri, rj), ki(r∗) = k(ri, r
∗) and θ represents the

vector of observations {θi|i = 1,M} from the training samples.
As a final step, we convert gaze direction in visual angles to dis-

play coordinates. If the user is at a distance d from the display (with
a width of W mm and a horizontal resolution of HR pixels), the
screen coordinates can be approximated by intersecting the gaze
direction characterised by the visual angle θ and the screen plane
as

pθ =
HR× d× tan θ

W
(3)

For consistency with the visual angle representation, we denote the
screen coordinate from left to right as (−W

2
, W

2
) in millimeters and

(−HR
2
, HR

2
) in pixels.

3.1 Leave-one-out Cross Validation
To evaluate the accuracy of our proposed method, we adopt the

leave-one-out cross validation methods over the data of the 12 sub-
jects. We first use training data of 11 subjects to learn the param-
eters of the covariance function, and then test all the frames from
the remaining subject. We vary different training data sizes (3 it-
erations of random sampling) and achieve mean accuracy of 3.9◦.
Table 1 summarises the gaze estimation error. We further illustrate
the observations over 11 visual angles fit in the learned model in
Figure 3.

Table 1 illustrates that the proposed method converges very fast
and requires few training samples for learning the model. The train-
ing is only performed once for obtaining a set of parameters for the
model. Furthermore, PCR is a single measure scale, which makes
our method computational inexpensive and suitable for real-time
applications. Figure 3 shows the regression model provides con-
sistent prediction accuracy for the entire screen space. This figure
also shows that, in our setup, PCR is a robust person-independent
measure for gaze direction in the range of no more than 23◦ to-
wards the left or the right directions. This is partially due to the
fact that we only got sample points in a limited range of visual an-
gles (−26.6◦, 26.6◦). Collecting training points distributed over a
wider range could lead to more accurate estimates, but it becomes
unrealistic for fixation of extreme gaze angles.

Training data frame size (max. 4000 frames)
100 (2.5%) 200 (5%) 300 (7.5%) 1000 (25%) 2000 (50%)

(deg.) (mm) (deg.) (mm) (deg.) (mm) (deg.) (mm) (deg.) (mm)
S1 4.73 105.77 4.62 103.60 4.69 104.96 4.63 103.74 4.61 103.33
S2 3.95 89.12 4.17 93.98 4.06 91.73 4.01 90.73 3.96 89.73
S3 4.36 99.77 4.33 99.63 4.28 99.22 4.33 100.08 4.34 100.12
S4 3.86 85.44 3.93 87.05 3.84 85.34 3.93 87.07 3.93 87.14
S5 3.64 83.07 3.51 80.34 3.49 79.90 3.47 79.43 3.45 79.14
S6 3.77 84.00 3.78 84.53 3.64 81.42 3.80 85.01 3.86 86.20
S7 3.75 85.21 3.94 89.99 3.82 87.59 3.88 88.71 3.88 88.60
S8 4.10 92.70 3.80 86.12 3.68 83.52 3.71 84.22 3.76 85.34
S9 3.41 78.00 3.48 79.42 3.65 83.23 3.69 84.17 3.65 83.18

S10 3.97 90.22 3.77 86.37 4.45 102.52 3.77 86.62 3.74 85.85
S11 4.44 101.01 4.24 97.14 3.99 89.65 3.80 86.86 3.76 86.30
S12 3.97 90.59 3.88 89.06 3.65 83.43 3.72 85.50 3.68 84.65

M 4.00 90.41 3.96 89.77 3.94 89.38 3.9 88.51 3.89 88.29
SD 0.37 8.22 0.33 7.17 0.37 8.16 0.31 6.58 0.31 6.55

Table 1: Summary of gaze estimation errors of 12 subjects, 
standing at a distance of 1.2m away from the display, with dif-
ferent fraction of training data for learning. Gaussian models 
are trained through batch training over data from 11 subjects, 
and we used leave-one-subject-out cross validation
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Figure 3: Different colour in the left figure represents the
learned regression model per validation over one subject. The
overlap of the 12 curves shows consistent model across different
subjects, which indicates PCR is a robust person-independent
measure. However, the generalised model does not fit when
visual angles exceeds around 23◦ towards left or right side as
shown in the right figure.

4. APPLICATIONS
From the study, we learned that PCR can be mapped to a do-

main of discrete regions or to a domain of continuous space. In
this section, we explain two ways of employing PCR for eye-based
interaction and illustrate example applications. We implemented
the applications using OpenCV and Microsoft Visual Studio and
executed the application in real-time.

4.1 Mapping PCR to Screen
PCR can be mapped directly onto the screen space domain. This

is similar to having a cursor on the display, where the cursor follows
where a user looks at.

4.1.1 Photo Slideshow Browser
As described in the previous section, the screen space can be

divided into a horizontal sequence of distinguishable regions. Con-
tent can be illustrated discretely, and users can select a discrete re-
gion by looking at it. We implemented a photo slideshow browser.
The display shows a row of thumbnail images. A user stares at a
thumbnail to make a selection, and an enlarged version of the se-
lected image is displayed above the row of thumbnails (see Fig. 4(a)).

4.1.2 Fisheye View Menu
We implemented an application that accepts continuous gaze in-

put for scrolling through a fisheye view menu (see Fig. 4(b)). Sim-
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(a) Slideshow (b) Fisheye Menu (c) Panorama

Figure 4: Screenshots of the example applications.

ilar to the Mac OS X dock, we use PCR to move a cursor along a
menu of icons. An icon gets magnified as a user looks at it.

4.2 Mapping PCR to Speed
An alternative way of mapping PCR is to apply it as a relative

measure for controlling the speed of moving content. The center
region is a reference for zero speed, and as the user looks further
away from the center, the speed increases in the same direction of
the user’s gaze.

4.2.1 Panorama Image Viewer
We implemented a panorama image viewer (see Fig. 4(c)). The

application shows part of a circular panorama image. The user
looks left or right to pan the image. We implemented that the fur-
ther the user looks away from the center of the display, the faster the
image scrolls, and the user can simply stop the panning by looking
at the central region.

5. DISCUSSION AND LIMITATIONS
The PCR method is a lightweight software solution that detects

gaze directions from camera images. The method is based on a
relative measurement of users’ eye feature points, which requires
no prior calibration of the users for system training. This makes
it particularly suitable for public environments, such as train sta-
tions and airports, where we have no control or prior information of
the users. Besides public displays, mobile devices with integrated
camera, such as tablets, can also support PCR inputs. Nonetheless,
the method is less suitable for mapping PCR to displays of small-
screen devices (e.g., mobile phones), as the available screen space
limits the visual angle of the users. PCR is more suitable for tasks
that map PCR to speed. For example, users could look at different
directions for controlling audio volume, scrolling music albums or
panning pictures. However, it would be interesting to investigate
issues that users encounter with PCR applications on mobile de-
vices, such as how far away from the screen that users need to look
for triggering inputs; and how movements of mobile devices influ-
ence system performance.

An extension of PCR for tracking vertical eye movements would
further increase expressiveness of the interface. This would allow
scrolling of 2D content, such as maps. However, vertical track-
ing based on eye image features is significantly more challenging.
PCR could be defined by the difference of y coordinates of the eye
corners and the pupil centers. However, PCR becomes less distin-
guishable in vertical direction as the eyes are easily occluded by the
eye lids.

As PCR is based on the horizontal symmetry of eye movements,
which requires both eyes on the same horizontal level, the perfor-
mance of PCR can be influenced by head tilting. Similar to existing
gaze estimation methods [2], PCR works best when a user is facing
forward towards the camera. Future work could focus on combin-

ing head pose and gaze direction to extend PCR such that head
movement and eye movement are seamlessly accommodated.

6. CONCLUSION
In this paper, we presented a novel measure Pupil-Canthi-Ratio

and defined a lightweight and calibration-free method for estimat-
ing horizontal gaze direction. PCR is based on the symmetry of
our eyes and can be extracted from eye images. It is a relative
measure which describes the degree of users’ gaze towards left or
right from looking ahead. We mapped PCR to gaze direction using
Gaussian regression. Our study and evaluation showed that PCR
is a robust measure for person-independent horizontal gaze esti-
mation and achieved an average accuracy of 3.9 degrees. We also
illustrated examples of interaction applications and discussed lim-
itations and potential extension of PCR. As the proposed method
requires only images from a normal camera, it provides a readily
deployable solution for gaze interaction for out-of-lab applications.
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