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Abstract

We contribute a novel gaze estimation technique, which is adaptable
for person-independent applications. In a study with 17 participants,
using a standard webcam, we recorded the subjects’ left eye images
for different gaze locations. From these images, we extracted five
types of basic visual features. We then sub-selected a set of fea-
tures with minimum Redundancy Maximum Relevance (mRMR)
for the input of a 2-layer regression neural network for estimating
the subjects’ gaze. We investigated the effect of different visual
features on the accuracy of gaze estimation. Using machine learn-
ing techniques, by combing different features, we achieved average
gaze estimation error of 3.44◦ horizontally and 1.37◦ vertically for
person-dependent.

CR Categories: I.4.7 [Image processing and computer vi-
sion]: Feature Measurement— [I.5.4]: Pattern Recognition—
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1 Introduction

We are interested in eye gaze estimation with pervasive equipment,
such as web cameras we might find mounted on public displays.
Our motivation is to use equipment that we can expect to find in
our environments for eye gaze interaction. Naturally, as cameras in
our everyday environments are not optimized for gaze tracking, the
challenge is to advance methods that are capable of estimating gaze
using eye images captured under real-world constraints.

The method we propose is based on extraction of low-level features
from images of the eye. Through image transformation into feature
space, we are encoding information such as texture and edges in a
feature vector that represents an image more compactly (i.e. with
reduced dimensions) than a raw pixel image. The feature vector
serves as input for a two-layer regression neural network that pro-
duces gaze estimates. The neural network requires a priori training
to learn the relationship between image features and gaze direction.

In this paper we focus on an investigation into the robustness of our
method with respect to a diverse user population. We report on a
user study with 17 participants who were selected with a view of
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maximizing diversity, in terms of different gender, ethnicities, eye
shapes, eye lashes and pupil colors. As the focus was on user diver-
sity, other conditions were controlled by mounting a web camera in
front of the participant’s eye, using a stimulus at a fixed distance,
and ensuring consistent illumination. Gaze data was collected for
13 predefined gaze locations.

The collected data was analyzed with five different features as well
as their combination, to gain insight into their performance for gaze
estimation. We first considered a person-dependent evaluation, in
which training and testing were performed on data from the same
user. In a pervasive computing world, we consider this approach rea-
sonable for adopting a camera embedded in one’s personal devices
for eye-tracking. As the system is calibrated for a specific user, rea-
sonably high gaze accuracy would be expected. We also conducted
a person-independent evaluation where the system’s robustness is
tested using leaving-one-person-out cross-validation. As the sys-
tem is trained by others than the user, it is naturally far less accurate.
However, the case is compelling from a pervasive computing per-
spective, as person-independent tracking would permit eye-based
interaction on an ad hoc basis, for instance at a public terminal.

2 Related Work

Work in eye tracking generally aims to achieve best possible accu-
racy (e.g., [Zhu and Ji 2005; Williams et al. 2006]) with hardware
optimized for the task, and careful calibration to the individual user.
While we do consider person-dependent tracking as well, we are
basing our work on an approach that is generalizable to the person-
independent case. In this study, we use a web camera mounted
close to the user’s eye for experimental control, but in principle we
envision our approach to work with cameras operating at larger and
varying range. This similar to the use of cameras for eye gaze atten-
tion detection (e.g., [Vertegaal et al. 2006]) but we aim to detect
not only attention but gaze directional information.

Our approach for processing eye images is appearance-based, con-
trasting model-based approaches that use an explicit geometric
model of the eye for gaze estimation but typically requiring a ded-
icated apparatus [Hansen and Ji 2010]. Appearance-based ap-
proaches work under normal illumination and directly infer gaze
from video images. Previous works have shown the potential of
this approach for estimating gaze from low resolution images, under
laboratory conditions [Baluja and Pomerleau 1994; Xu et al. 1998;
Williams et al. 2006; Sugano et al. 2008]. These works were based
on raw pixel images - by representing images as input vectors with
raw pixel values for machine learning. Williams et al. combined
to use steerable filters on eye images and raw pixel data to achieve
better accuracy for regression-based gaze estimation [2006]. Zhang
et al. classified basic gaze directions using a small set of low-level
features extracted from video images [2011].

3 Gaze estimation using image features

Typical appearance-based approaches use the entire eye image for
gaze estimation. Among them, approaches that use raw pixel values
can only represent general information (color/intensity) of the over-
all image. By transforming the image into another feature space



Feature Description
Color (C) fC extracts the red-green (RG) and blue-yellow (BY) color opponencies.
Intensities (I) fI extracts the grey scale intensities.
Orientation (O) fO is obtained by convolving the intensity image with a set of Gabor filters in four orientations {0◦,45◦,90◦,135◦}.
Haar (H) fH represents Haar features using two rectangular patterns which extracts local borders.
Spatiogram (S) fS encodes RGB color histogram and their spatial distribution.

Table 1: The five types of low-level image features used in this work.

Figure 1: Extraction of haar-like features. The image was first
normalized and then sub-sampled into a Gaussian pyramid by con-
volution with a 3x3 Gaussian smoothing filter and decimation by
a factor of two. Two rectangular patterns were used which detect
where the border lies between a dark region and a light region, hor-
izontally and vertically. Each value in the resulting Haar feature
vector fH is a response of the rectangular patterns at a certain
position and scale in the image.

allows us to encode information such as texture, edges, etc., and
potentially reduce the data dimension.

3.1 Feature extraction and feature selection

In our approach, we adopted five different types of features, namely
color, intensities, orientation, haar-like features as well as spa-
tiogram (see Table 1). We chose these features because of their low
computational complexity as well as their prevalent application in
computer vision.

For calculating color fC , intensities fI , and orientation fO features,
we used the method from Walther and Koch [2006]. The input im-
age I was processed for low-level features at multiple scales, and
centre-surround differences were computed. Three individual fea-
ture vectors fK∈{C,I,O} = {f{i}}1200i=1 were extracted to represent
I in color, intensities and orientation feature space respectively.

Haar-like features have a low computational cost and provide local
edge information of an image [Viola and Jones 2001]. They consist
of a set of simple rectangular features. Rectangles can be placed at
any position and scale within the original image. The sum of the
pixels which lie within the white rectangles is subtracted from the
sum of pixels in the dark rectangles (see Figure 1). Each feature
type can indicate the existence of edges or changes in texture.

While human look at different directions, the color distributions and
shape configuration between the pupil and the sclera of the user’s
eye appeared in images from the camera change. To represent
pixel values and spatial distribution of colors in an image simul-
taneously, we employed the spatio-histogram (spatiogram) [Birch-
field and Rangarajan 2005]. It expresses local color patches over
entire image. This allows us to encode object information about
the texture and shape, as well as the spatial relationships between
the pixels, such as the average locations of different color patches.

Given an input RGB image I , let H{k} represent the total num-
ber of pixels in the kth bin of an ordinary color histogram. We
define the mean of the x,y coordinates of all pixels in the kth
bin as C

{k}
x and C

{k}
y . The spatiogram of the image is a vector

fS = {H{k}, C{k}x , C
{k}
y }(24,24,24)k=(0,0,0) where the quantization level

was fixed to M = 25 for each color channel in this work.

Five feature vectors fK∈{C,I,O,H,S} were computed from each im-
age I in the database. To yield a fast and efficient gaze estimation,
a feature selection procedure is followed instead of directly using
the high-dimensional raw vector as input to the neural network. By
selectively choosing the essential elements in the feature vector, we
can reduce the input dimension and minimize redundancy, while
maximizing features’ relevance. We employed mRMR (minimum
Redundancy Maximum Relevance [Peng et al. 2005]) feature selec-
tion on the original feature vector extracted from I , thus reducing
the high dimensional image data I into a low dimensional feature
vector zK∈{C,I,O,H,S} = {f{i}}mi=1 where m = 50.

3.2 Gaze estimation using a 2-layer regression neural
network (RNN)

Gaze estimation was performed by mapping extracted feature vec-
tor z = {f{i}}mi=1 from image I to output gaze location g = (x, y)
of the user’s. Using raw eye image pixels as the input to a 3 layer
feed-forward Artificial Neural Network (ANN) for gaze estimation
has been proposed in previous work [Baluja and Pomerleau 1994;
Xu et al. 1998]. In this study, the dimension-reduced feature vector
z = {f{i}}mi=1 extracted from raw image was supplied as the input
to the RNN. The input vector was first normalized to ensure all input
features were in the same data range. We adopted a feed-forward
neural network model using a 2-layer perceptron with linear output
unit activation function to learn the gaze mapping function g(z).
This is a two-layer network where the first layer has tanh() unit
and the second layer is linear. The RNN was trained on a set of
labelled eye image/gaze coordinates pairs by minimizing a sum-of-
squares error function using the scaled conjugate gradient optimizer.
The number of hidden units was decided by averaging the input and
output units size.

4 Data collection and analysis

We conducted a user study to evaluate the performance and accu-
racy of our gaze estimation technique. 17 participants (five female,
12 male), aged between 18 and 40 years (mean=26.9±6.8) took part
in the study. We took particular care to include participants of dif-
ferent ethnicities, with different eye lashes and pupil colors. Specif-
ically, we had nine participants with dark (i.e. brown or black) and
eight with bright eyes (i.e. green or blue)). None of the participants
wore glasses, but two wore contact lenses during the experiment.

We used a standard webcam (Microdia Sonix USB 2.0) with a reso-
lution of 640x480 pixels and a frame rate of 30Hz. In addition, we
used a Dikablis eye tracker from Ergoneers GmbH for collecting



(a) (b)

Figure 2: (a) Participant wearing the Dikablis eye tracker . (b) The
additional webcam is mounted on the head unit to record close-up
left eye images [Zhang et al. 2011].

(a) (b) (c)

Figure 3: (a) An image from the webcam, (b) a scene image from
the Dikablis, and (c) a screenshot of the experimental stimulus. A
red point is displayed in order at 13 different locations on the screen.
The neighboring stimuli are spaced 10.75◦ in horizontal and 6.9◦

in vertical of visual angle from each other [Zhang et al. 2011].

gaze data (see Figure 2(b)). The webcam was mounted to the eye
tracker on a plastic frame attached to the head unit. The camera
recorded images of the participant’s left eye (see Figure 3(a)).

The experiment took place in a real office environment with fluores-
cent illumination. Participants were seated about 60cm away from
a 23-inch LCD monitor (with visual angles of 43◦ horizontal and
27.6◦ vertical)(see Figure 3(b)). Free movements of the head and
the upper body were allowed at any time but we encouraged the
participants to move as little as possible during the experiment.

The visual stimulus consisted of a red dot with a radius of 20 pixels
(i.e. 0.5◦ of visual angle) shown in front of a light grey background.
The system guided each participant through a sequence of 13 differ-
ent predefined gaze locations. Participants were asked to fixate on
the red dot at each location for five seconds (see Figure 3(c)). After
five seconds, the stimulus was shown at the next location. There-
after, the participant was asked to follow a moving stimulus along
several predefined paths. For each path, the stimulus moved hor-
izontally, vertically and diagonally at constant speed. The entire
procedure was performed three times. While the data was recorded,
the system labeled the recorded images according to the stimulus’s
gaze point on the screen (see Figure 3(b)).

4.1 Analysis

We define the gaze direction by two rotation angles: Θh and Θv ,
for horizontal and vertical directions, respectively. The origin,
(Θh,Θv) = (0, 0), is the eye position when the gaze direction
is perpendicular to the screen surface. Each direction of gaze (Θh,
Θv) corresponds to only one gaze point g = (x, y) on the screen.
d denotes the distance of the users from the monitor. Given an esti-
mation g′ = (x′, y′), the angular error was calculated by:

(∆Θh,∆Θv) = (|tan−1(
x− x′

d
)|, |tan−1(

y − y′

d
)|) (1)

Feature Horizontal [◦] Vertical [◦]
Individual Color (C) 4.21± 0.56 2.41± 0.69

Intensities (I) 4.03± 0.65 1.89± 0.62

Orientation (O) 4.02± 0.65 2.04± 0.57

Haar (H) 3.73± 0.56 1.52± 0.49

Spatiogram (S) 5.48± 0.51 1.97± 0.53

Combined All 3.44± 0.48 1.37± 0.40

Table 2: Person-dependent mean and standard deviation of the
gaze estimation angular error in horizontal and vertical direction
averaged over the 17 participants for different feature types.

Feature Horizontal [◦] Vertical [◦]
Individual Color (C) 11.29± 3.10 9.11± 1.59

Intensities (I) 10.59± 2.71 8.26± 1.44

Orientation (O) 10.59± 2.47 8.95± 1.03

Haar (H) 15.37± 3.86 11.21± 1.77

Spatiogram (S) 15.66± 1.82 9.17± 2.39

Combined All 13.89± 3.84 8.63± 2.58

Table 3: Person-independent mean and standard deviation of the
gaze estimation angular error in horizontal and vertical direction
averaged over the 17 participants for different feature types.

5 Experimental results

5.1 Person-dependent evaluation

Around 1900 images/gaze coordinates pairs were collected for each
participant. We first evaluated our system using a person-dependent
evaluation scheme. For each participant 70% of the images were
randomly selected for training (the “training set”); the remaining
30% (i.e. the test set) were used for gaze estimation on the same
participant. The random splits of training and testing data were
conducted 5 times for each participant.

Table 2 shows the average results for the different image features
(cf. Table 1). The errors were calculated under the assumption that
the participant looked at the centre of the stimulus on the screen.
Using person-dependent evaluation the system achieved an average
gaze estimation angular error of 3.44◦ horizontally and 1.37◦ verti-
cally (1◦ corresponds to about 1.1cm on the screen plane). Figure 4
illustrates the angular errors for each participant using the five types
of image features individually and all combined.

5.2 Person-independent evaluation

To test the algorithm’s robustness across different people we further
performed a leave-one-person-out cross-validation. In this scheme,
gaze data of 16 participants was used for training the regression
neural network and the data of the remaining person was used for
testing. This was performed repeatedly over all 17 participants. The
resulting gaze estimation performance averaged across all iterations
and participants are summarized in Table 3.

6 Discussion

Our data set includes outliers (e.g. image blurring and blinks),
noises (e.g. reflection from bright objects, such as the monitor), as
well as human errors (e.g. a participant failed to follow the stimu-
lus). Despite these challenges our results show that estimating gaze
with a small set of low-level image features from webcam images
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Figure 4: Gaze estimation angular errors of 17 participants in horizontal (4(a)) and vertical (4(b)) directions. The sold lines in (a) and (b)
represent angular errors using the five types of features individually, while the dashed lines illustrate the errors when using all the features
combined. The error distribution of each instance in both directions is illustrated in (c).

is feasible. A survey by Hansen and Ji identified that the accuracy
of existing systems using webcamera without any additional illumi-
nation is 2-4 ◦ [2010]. Our system achieved similar accuracy with
a user-dependent setup. Furthermore, the angular error was influ-
enced by squinting (occlusions by the eyelid) and frequent blinking.
In our post-study analysis, we observed that participant 12 blinked
frequently and participant 16 squinted his eyes (see Figure 4(a) and
4(b)). A blinking detection method can be developed to increase
the robustness of the system. The stimulus spreads less in vertical
direction (10.75 ◦ horizontally, 6.9 ◦ vertically) which result in less
error vertically. This suggests that our system can be improved by
using more spatially closed training points.

Our dataset covers a large variance of eye appearance from peo-
ple with different ages, gender and races. Consequently, person-
independent gaze estimation shows higher angular errors than
person-dependent. Although eye appearance differs across people,
by using machine learning, our method learned common features
which are effective in estimating gaze. Without re-calibration our
method is able to provide sufficient accuracy to distinguish different
areas of the monitor.

Figure 4 shows that although several individual features achieve bet-
ter accuracy, overall the best performance is achieved by combining
all features. Among the individual features, color, intensities, and
orientation perform similarly, while spatiogram performs worst in
horizontal direction. Haar features achieve better performance in
person-dependent than in person-independent evaluation. This sug-
gests Haar features are sensitive to eye appearance variance. Over-
all, these results show that it is difficult to select a single best feature
set for different users. We plan to investigate other features that are
potentially robust to different image scales (varying distance from
eye to camera) and lighting variance, as well as methods to opti-
mally select features for different applications. In addition, further
improvements include adopting advanced gaze regression methods.

7 Conclusion

In this paper we presented a novel appearance-based technique that
uses a small set of low-level image features and machine learning
for gaze estimation. Our technique has the benefits of no calibration,
non-intrusiveness and adaptability to new users. Results from a
17-participant user study show that the technique is robust across
users with diverse characteristics and achieve decent performance
for discrete gaze estimation. These initial results are promising and
open up interesting applications in pervasive eye tracking.
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