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ABSTRACT In this paper, we propose a novel and enhanced approach for crowd counting within the
domain of manatee monitoring, aiming to significantly improve efficiency and accuracy. The proposed
model achieves state-of-the-art results in the challenging task of manatee counting, simplifying the work
of scientists and experts in the field. Our model not only facilitates the identification and enumeration of
manatees in images and videos but also excels in scenarios that pose considerable challenges for human
observers. To enhance accurate counting of the manatee aggregation, we introduce a framework with three
key innovations to tackle the challenge: a new approach to generate density maps during the training process,
an augmented technique to balance the dataset, and a cross-domain solution to enhance overall performance.
The proposed two-dimensional Gaussian kernel offers a refined method for creating density maps, providing
a more robust foundation for the training phase. Additionally, we built a balanced and augmented dataset,
ensuring that the model is exposed to diverse and representative instances, thus improving its generalization
capabilities. Furthermore, we incorporate a cross-domain phase pretraining the model utilizing an image
dataset of wild animals to initialize the weights and further improve performance. Experiments and
comparisons, with respect to previously established CSRNET model presented in Wang et al. (2023),
demonstrate noteworthy improvements. Remarkably, our model achieves a Mean Absolute Error (MAE)
of nearly half compared to the rival approach, showcasing the substantial advancements achieved through
our refined methodology. This progress boosts the reliability of manatee counting in conservation efforts
and ecological research.

INDEX TERMS Machine learning, cross-domain learning, convolutional neural networks, crowd counting,
manatees.

I. INTRODUCTION
Crowd counting, a widely recognized task, involves the
automated counting of individuals, animals, or objects
within images or videos. Its importance extends across
diverse domains, with applications ranging from public safety
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and monitoring public spaces to human behavior analysis
and video surveillance. The evolution of this task from
its pioneering focus on people counting has led to the
development of numerous subtasks tailored to count specific
animals or objects.

In this paper, we focus on crowd counting with a specific
emphasis on manatees. Manatees, characterized by their
peaceful behavior, aquatic lifestyle, and herbivorous diet,
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pose a unique challenge for crowd counting. Notably, the
urgency of this task is underscored by the potential threat of
manatee extinction in Florida’s waters. The alarming statistic
of nearly 2000 manatee deaths between 2021 and 2022 [1],
attributed to boat collisions andwater pollution affecting their
seagrass habitat [2], highlights the pressing need for effective
monitoring and conservation efforts. Counting manatees
becomes intricate due to their characteristics. These gentle
creatures, are predominantly gray, making them susceptible
to blending into their surroundings, especially when situated
near the coast (Fig. 1). The challenge gets harder because of
their size changes. In fact, when the image shows a close-
up view, they look big, but when it shows a distant view, they
look small. Moreover, they often stay in groups, making them
hard to count because it’s difficult to tell where one animal
ends and another begins.

To solve this problem Wang et al. [10] proposed some
models trained on a dataset of labeled manatee that represent
the state of the art on this task. More specifically the three
proposed models were trained on the same dataset, using
different density map generation techniques: dots, lines, and
Anisotropic Gaussian kernel.

Our solution consists of a new method, more centered
on the whole manatee shape and the contrasts with the
background. Our method brings three key contributions: the
introduction of a novel kernel function designed to represent
density maps, the utilization of an augmented dataset to
enhance model generalization, and the incorporation of a
pretraining phase on a dataset featuring similar background
conditions.

More in detail, the introduction of the new kernel function
aims to direct the model’s attention towards the whole
bounding box, consequentially focusing on the entire animal
and its differentiation from the background. In addition, the
incorporation of a pretraining phase stems from the restricted
size of the dataset. By implementing a pretraining phase
on a similar dataset to initialize model weights, followed
by a fine-tuning phase on the target dataset, performance
outcomes are enhanced. Additionally, acknowledging the
dataset’s imbalance between images, we have chosen to
utilize data augmentation techniques. This strategy aims
to address the dataset’s imbalance, thus facilitating more
effective training and ultimately enhancing performance
across all categories, regardless of the abundance or scarcity
of animal instances within them.

For our pipeline, we employed the CSRNET model [13],
a choice motivated by its previous application in manatee-
related research as evidenced by the reference to the CSRNET
model in the prior study [10]. This deliberate choice not only
ensures continuity and comparability with earlier research
but also highlights the adaptability and efficacy of the
CSRNET model for addressing the challenges posed by
manatee detection tasks. The outcomes of our experiments
are highly promising, showcasing advanced and state-of-
the-art results in the domain of manatee detection. These
results underscore the effectiveness of our proposed method

FIGURE 1. Manatees crowd in the Blue Spring State Park, Florida (from
Manatee Dataset [33]).

in pushing the boundaries of performance for this specific
task.

II. RELATED WORKS
Early crowd-counting methods relied on conventional com-
puter vision techniques such as background subtraction [4],
blob analysis [3], and feature engineering, but these
approaches often struggled with complex scenes, varying
lighting conditions, and occlusions. Subsequently, density-
based methods emerged as a response to the limitations
of traditional approaches. These techniques focus on esti-
mating crowd density maps, utilizing methods like kernel
density estimation, Gaussian processes, and Markov random
fields [34]. While offering improved performance, these
methods still faced challenges with scale variations and
crowded scenes.

The advent of deep learning revolutionized crowd counting
by enabling automatic feature learning from raw data.
Convolutional Neural Networks (CNNs) and their variants,
such as VGG [14], ResNet [15], and DenseNet [16], have
demonstrated remarkable success in accurately counting
crowds. The use of pre-trained models, transfer learning,
and fine-tuning further enhanced the adaptability of deep
learning approaches to diverse datasets. One of the first deep
models for crowd counting was presented in 2015 [5], where
they use Convolutional Neural Networks for regression.
This method focuses on splitting the image into patches,
doing regression on each patch to have the number of
people present in each section, and, in the end, summing
them to obtain the number of people present in total in
the whole image. Another work proposed in the same year
by Zhang et al. [18], presents a method based on deep
convolutional neural networks (CNNs) to tackle the challenge
of crowd counting across diverse scenes. They proposed a
convolutional neural network (CNN), trained alternatively
with two related learning objectives, crowd density and crowd
count. This proposed switchable learning approach is able to
obtain a better local optimum for both objectives.

Alternatively, another end-to-end convolutional neural
network (CNN) architecture was proposed by Chong et al.
[19]. It takes a whole image as its input and directly
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outputs the counting result, and it takes advantage of
contextual information to predict both local and global
counts. In particular, they first feed the image to a pre-trained
CNN to get a set of high-level features, then the features are
mapped to local counting numbers using recurrent network
layers with memory cells. Sam et al. [20] proposed another
regression model based on switching convolutional neural
networks to leverage variation of crowd density within
an image to improve the accuracy and localization of the
predicted crowd count. The independent CNN regressors
are designed to have different receptive fields and a switch
classifier is trained to split the image in patches and relay each
crowd scene patch to the best CNN regressor.

MTCNN model, which is based on the work proposed by
Zhang et al. [6], uses density map prediction and it is one
of the first models to introduce a multi-column structure,
that refers to the three cascaded stages, each with its own
Convolutional Neural Network (CNN) architecture, working
together to achieve robust and accurate results. It became very
popular also because it doesn’t split the image in patches, but
analyzes the whole image and returns the predicted density
map.

Features available for crowd discrimination largely depend
on the crowd density to the extent that people are only seen
as blobs in a highly dense scene. This problem is faced by
Sam et al. [28], where presented a growing CNN that can
progressively increase its capacity to account for the wide
variability seen in crowd scenes. The model starts from a
base CNN density regressor, which is trained in equivalence
on all types of crowd images. In order to adapt to the huge
diversity, two child regressors are created, which are exact
copies of the base CNN. A differential training procedure
divides the dataset into two clusters and fine-tunes the child
networks on their respective specialties. Consequently, the
child regressors become experts on certain types of crowds.
The child networks are again split recursively, creating two
experts at every division. This hierarchical training leads to
a CNN tree, where the child regressors are more fine experts
than any of their parents. An additional interesting work is
presented by Ma et al. [29], who instead of building a new
model, used the Bayesian loss. Actually, they used a Bayesian
loss function for crowd counting, improving the accuracy by
utilizing point-level annotations to better guide the learning
process for predicting crowd densities.

PCC Net, by Gao et al. [21], represents a novel method for
crowd counting that accounts for perspective distortions in
images. They introduce the PCC Net, a spatial convolutional
network designed to handle the variations in crowd density
and perspective distortions commonly found in real-world
scenarios. Their approach improves the accuracy of crowd
counts by effectively modeling the spatial relationships and
perspective changes within an image. In fact, they designed
a perspective module to encode the perspective changes in
four directions, namely Down, Up, towards the Left, and
Right.

An additional intriguing approach based on VGG-16 is
proposed by Sindagi and Patel [23]. It utilizes VGG-16 as
a feature extractor and an inverse attention mechanism to
effectively identify and count individuals in crowded scenes.
By focusing on regionswith low attention, themodel achieves
improved accuracy in estimating crowd densities, even in
challenging scenarios.

One extra challenge in crowd counting is the varying scales
at which people appear, depending on their distance from the
camera. To address this issue, Varior et al. [24] proposed a
novel multi-branch scaleaware attention network that exploits
the hierarchical structure of convolutional neural networks
and generates, in a single forward pass, multi-scale density
predictions from different layers of the architecture. To aggre-
gate these maps into a final prediction, they present a new
soft attention mechanism that learns a set of gating masks.
An alternative proposal for the scale problem is presented
in Liu et al. [27], where a novel Deep Structured Scale
Integration Network (DSSINet) is presented. This newmodel
addresses the scale variation of people by using structured
feature representation learning and hierarchically structured
loss function optimization. A supplementary model, the
Attentional Neural Field (ANF), is proposed in the work by
Zhang et al. [25]. The ANF is an encoder-decoder network
composed of conditional random fields (CRFs) and an
attention mechanism. More in specific, conditional random
fields (CRFs) are present to aggregate multi-scale features,
to buildmore informative representations, and to better model
pair-wise potentials in CRFs incorporate a non-local attention
mechanism implemented as inter- and intra-layer attentions
to expand the receptive field to the entire image respectively
within the same layer and across different layers, which
captures long-range dependencies to conquer huge scale
variations. A further innovative network was proposed by
Liu et al. [26], the Cross-stage Refinement Network (CRNet).
It can refine predicted density maps progressively based on
hierarchical multi-level density priors. In particular, CRNet
is composed of several fully convolutional networks stacked
together recursively, so that the previous output is the next
input, and each of them serves to utilize the previous density
output to gradually correct prediction errors of crowd areas
and refine the predicted density maps at different stages.
Another creative approach was presented by Bai et al. [22],
which utilized an adaptive dilated convolutional network
combined with a self-correction supervision mechanism.
This method addresses the issue of varying crowd densities
by adaptively adjusting the dilation rates of convolutions,
allowing for more accurate feature extraction across different
scales. The self-correction supervision further refines the
counting accuracy by iteratively correcting the network’s
predictions.

Recently other state-of-the-art models were published,
each one obtaining great results in different types of datasets,
like DSNet [7], SASNet [8], and TransCrowd [9]. The
DSNet model, presented by Dai et al. [7], is composed of
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the initial ten layers of VGG-16, along with three dense
dilated convolution blocks (DDCBs) featuring dense residual
connections (DRCs). Additionally, three convolutional layers
are employed for the regression of crowd density maps. The
purpose of integrating the dilated convolution blocks with
dense residual connections is to enhance scale diversity and
broaden the receptive fields of features, enabling the model
to effectively address variations on large scales and achieve
precise estimation of density maps. The SASNet presented
in the work proposed by Song et al. [8], is based instead,
on a U-shaped backbone for feature extraction, to capture
diverse feature representations at multiple levels for a given
image. These features are input into an attention layer to
generate multi-level confidence maps and density maps.
In the final step, guided by the multi-level confidence maps,
the density maps are integrated at different levels through
a weighted average to derive the final result. TransCrowd,
presented by Liang et. al. [9], takes the initial image, splits
it into patches of a fixed size, and each patch is subjected
to linear embedding along with position embeddings. The
resulting sequence of feature embeddings is then passed
through a Transformer encoder, after it, a regression head
is employed to generate the count prediction. One more
transformer-based solution is developed by Lin et al. [30].
They proposed a graph-modulated transformer to enhance the
network by adjusting the attention and input node features
respectively based on two different types of graphs. Firstly,
an attention graph is proposed to diverse attention maps
to attend to complementary information, built upon the
dissimilarities between patches. Secondly, a feature-based
centrality encoding is proposed to discover the centrality
positions or importance of nodes.

Another trending field in crowd counting is semi-supervised
and unsupervised methods, due to the fact that supervised
crowd counting relies heavily on costly manual labeling,
which is difficult and expensive, especially in dense scenes.
Many works have been published on this topic, like
Crowdclip proposed by Liang et al. [31] and the work
presented by Ding et al. [32]. Crowdclip is based on the
idea that there is a natural mapping between crowd patches
and count text In fact, it uses the CLIP pre-trained vision-
language model, adjusting the image encoder by using
text prompts that rank crowd images based on ordinal
relationships. Instead in the Unsupervised Cross-Domain
work, they propose a cross-domain learning network to learn
the domain gaps in an unsupervised learning manner. More
in-depth it firsts explicitly measures the distances between
the source domain features and the target domain features
and aligns the marginal distribution of their features and
then removes domain-specific information from the extracted
features and promote the mapping performances of the
network.

In the realm of manatee counting, the state-of-the-art
model is presented in the paper written by Wang et al. [10].
This paper presents three different CSRNet models [13],
trained using three distinct methodologies for generating

density maps: dot representation, line representation, and
an Anisotropic Gaussian Kernel. However, each of these
approaches utilizes a 1-dimensional representation of the
manatee, which proves to be quite constraining. While
the Anisotropic Gaussian Kernel aims to represent the
manatee in a 2-D space, it has limitations because one
dimension consistently dominates, creating a slightly thicker
line, that essentially enlarges a little bit the 1-dimensional
representation. Furthermore, the dataset is labeled to optimize
this 1-dimensional encoding, although at the expense of
losing significant information.

For our study, we utilized the CSRNet model [13],
presented by Wang et al. [10] as one of the state-of-
the-art models for the manatee counting task, furthermore
facilitating easy comparison of the obtained results.

III. SYSTEM DESIGN
The typical method to approach a crowd-counting task,
applicable to various counting fields, involves starting to
generate density maps. This is achieved through encoding
techniques such as dots, lines, or occasionally kernel
functions, ensuring that the sum of the density map pixels
corresponds to the total count of objects in the image.
The model is then trained by inputting the original image
containing the objects to be counted and expecting a density
map as output. This initial approach is rudimentary, but it can
be enhanced by adding two additional stages to the procedure
and employing a 2-D kernel function for better density map
creation.

In this paper, we propose a novel and more robust pipeline.
Our enhancements focus on three main areas: density map
generation, data augmentation, and cross-domain learning
application. This methodology transcends specific domains,
making it adaptable to a wide range of counting tasks beyond
just manatees. Additionally, we include a detailed model
section to describe the functionality and implementation of
our pipeline.

A. DENSITY MAP GENERATION
Density maps are crafted by leveraging ground truth data.
We introduced an innovative kernel function for the gen-
eration of density maps, prioritizing the complete coverage
of bounding boxes. This adjustment enables the model to
shift its focus from a confined area in the middle of the
animal, like the dot or the line representations, to include
the entire body. Furthermore, the kernel function addresses
the differences in contrasts and color variations between the
object and its background. Our 2-D kernel function, rooted
in a Gaussian kernel, builds a shape for each bounding
box with higher values at central points and diminishing
values towards the edges. This design facilitates a nuanced
representation, ensuring that the sum normalizes to one
(Fig. 2). Furthermore, this approach results in a more
evenly distributed arrangement of pixels on the density map,
simplifying the model’s learning process.
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FIGURE 2. Example of our kernel function applied on a bounding
box(300 × 80 pixels). This image shows the spreading of the values,
higher in the center and near zero in the corners.

We center our attention on datasets containing bounding
boxes, where we consider the height and width of each
bounding box as hyperparameters. These bounding boxes
come in rectangular shapes, with dimensions that vary.
Consequently, we analyze the height and width of each
bounding box to devise a tailored representation that fully
captures its characteristics.

So, let width and height be parameters of the bounding box,
µ be the mean vector, σ be the standard deviation vector, and
(x, y) be the coordinates of the grid points, the 2D Gaussian
distribution is given by the Equation 1.

Gaussian(x, y) =
1

2πσxσy
exp

(
−
(x − µx)2

2σ 2
x

−
(y− µy)2

2σ 2
y

)
(1)

where:
- µx and µy are the mean values in the x and y directions,

respectively.
- σx and σy are the standard deviation values in the x and y

directions, respectively.
The mean vector µ is given by the Equation 2.

µ =

[
width
2

,
height
2

]
(2)

The standard deviation vector σ is given by the Equation 3.

σ =

[
width
4

,
height

4

]
(3)

Once calculated the Gaussian, we normalize it as show in
Equation 4.

Gaussian(x, y) =
Gaussian(x, y)

width−1∑
x=0

height−1∑
y=0

Gaussian(x, y)

(4)

This normalization ensures that the sum of all values in
the Gaussian distribution becomes 1, making it a probability
distribution over the defined grid.

Applying this formula to each annotated bounding box
results in a rectangular representation containing multiple
oval shapes. Each oval has pixels with uniform values, which
decrease from the center outward, creating a kind of big

faded ellipse as illustrated in Fig. 2. After normalization,
all the pixels that compose the representation sum to one,
maintaining the core idea of crowd-counting density maps.
This codification emphasizes the center of the bounding box,
where pixel values are highest, but also includes the entire
bounding box, capturing the full body of the animal and its
distinction from the background. The variation in pixel values
strikes a good balance for the model, focusing primarily on
the central part to identify the animal while also considering
the whole body. This helps the model better locate the animal
and increases the accuracy of the count, reducing potential
false positives or hallucinations.

B. DATA AUGMENTATION
To achieve optimal results in predicting density maps across
all scenarios, whether working with numerous or just a few,
it’s crucial to ensure balance in the training set. This entails
having a roughly equal number of images representing both
scenarios. Achieving such balance necessitates employing
data augmentation techniques, a well-established strategy in
computer vision [35].
Data augmentation involves generating new data from

existing ones. In the realm of images, this typically involves
applying various transformations such as random changes in
colors, brightness, rotation, and other factors to create new
images. This approach serves two main purposes: increasing
the number of samples within the dataset and enhancing the
diversity of training samples, consequently leading to a more
robust model.

For our specific application, we propose employing
random adjustments in brightness and contrast as part of
our data augmentation techniques. Notably, we avoided
stretching the density maps or modifying the images’ angle,
as altering these aspects would create new images not of
real-world occurrences, leading the model to learn irrelevant
information.

Consequently, to avoid introducing artifacts in our data,
the decision to adopt brightness and contrast changes for
improvement. These changes guarantee that the shape of
the animal is preserved and, with a careful choice of
hyperparameter, that no artifacts are introduced.

More in specific, the brightness adjustment increases or
decreases the brightness of an image by adding or subtracting
a constant value from each pixel’s RGB value.

Denote I (x, y) the intensity (brightness) of the pixel at
position (x, y) and c as the constant value added to adjust
brightness (this value should be random in a predefined
interval). Let’s underline that positive c will increase
brightness, while negative values will decrease it.

The formula for brightness adjustment is shown in the
Equation 5.

I ′(x, y) = I (x, y) + c (5)

The contrast adjustment, instead, changes the difference
in intensity between pixels, making the image more or less
vivid.
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Denote I (x, y) the intensity (brightness) of the pixel at
position (x, y), m as the mean intensity of the image, and f
as the contrast factor, where f > 1 increases contrast and
0 < f < 1 decreases contrast (this value should be random
in a predefined interval). The formula for contrast is shown
in the Equation 6.

I ′(x, y) = (I (x, y) − m) × f + m (6)

Here, (I (x, y) − m) adjusts the intensity relative to the mean
intensitym, then it’s scaled by the contrast factor f and finally,
the mean intensity m is added back.
In our specific case, the random values c and f are chosen

between 0.5 and 1.5. Such settings can keep the random field
big enough to generate different data and not generate biases
with duplicate images, but still limited to guarantee also that
no artifacts are introduced.

It is imperative to ensure these techniques are applied
ethically, specifically when dealing with sensitive ecological
research involving manatees. Special care is taken to ensure
that augmentation does not detract from the manatees’ repre-
sentation or contribute to biases that could negatively impact
conservation efforts. Our methods are checked to avoid any
potential harm to the understanding and preservation of
manatees.

C. MODEL ARCHITECTURE
After preparing the data and generating the density maps,
a pivotal decision, to make the pipeline work, lies in selecting
the appropriatemodel. Typically, in crowd-counting tasks, the
model is divided into two key components: feature extraction
and density map prediction.

The feature extraction stage is extremely important as it
is tasked with capturing crucial information from the image.
Typically, a pre-trained CNN architecture like VGG [14],
ResNet [15], or MobileNet [17] is employed for this purpose,
given their proficiency in extracting hierarchical features
from images. Once trained, this segment should isolate the
features relevant to the object of interest, enabling the model
to concentrate solely on counting the desired objects.

On the other hand, the second component focuses on
predicting the density map. It begins with convolutional
layers to further process the features obtained from the
first stage, facilitating the model in learning spatial patterns
and crowd relationships. Subsequently, upsampling layers,
such as transposed convolutions or bilinear upsampling, are
employed to gradually enhance the resolution of the feature
maps. The network ends with a regression layer responsible
for predicting the density map. Typically, this layer consists
of a single convolutional layer followed by an activation
function like ReLU to ensure non-negative density values.

In this process, starting from the features extracted in
the initial phase, the model constructs a density map that
accentuates the objects of interest. Specifically, the density
map is constructed by predicting the positions of the objects
and assigning higher values to their locations, while assigning
0 to areas where objects are absent. In our approach,

utilizing the 2-D Gaussian kernel function (presented in
Section III-A), the model aims to predict a Gaussian shape
resembling the object’s bounding box, with higher values
concentrated at the center and gradually decreasing towards
the edges. To generate this density map, the model considers
the dimensions of the original image and predicts the value
of the density for each pixel.

In this project, we selected the CSRNet network [13] cur-
rent state-of-the-art for counting manatees, as demonstrated
by Wang et al. [10], moreover, this decision enabled us to
compare our results with existing research. The CSRNet
comprises two main components, as outlined above: initially,
the first layers of the VGG16 net [14] finetuned on our
dataset, serve as a feature extractor, subsequently, convolu-
tional layers and final bilinear interpolation are employed to
generate density estimation and maintain alignment with the
original image dimensions.

To delve deeper, CSRNet takes as inputs the images
containing crowd scenes captured by cameras. These images
undergo the first ten Convolutional Neural Network (CNN)
layers for feature extraction, and, through this process, the
model identifies patterns and features relevant to crowd
density. Subsequently, the network estimates crowd density
across different image regions based on the extracted features,
and, in the end, it predicts the density at each pixel, generating
density maps as outputs.

During the training and testing phases, the model’s outputs
are compared with ground truth density maps generated using
the 2-D Gaussian kernel function to evaluate the level of the
predictions in case of test and to improve them in case of
training (this process is shown graphically in Fig. 3). This
is often made using the Mean Squared Error function or the
Mean Absolute Error function.

1) LOSS AND EVALUATION FUNCTIONS
A crucial aspect, following model selection, involves deter-
mining the appropriate loss and evaluation functions. In line
with the methodology detailed in the Wang et al. [10],
we opted for the Mean Squared Error (MSE) as our
loss function and the Mean Absolute Error (MAE) as the
evaluation metric. These functions are widely employed for
both loss calculation and evaluation in crowd-counting tasks,
ensuring the robustness and comparability of our results.

To elaborate, the Mean Squared Error (MSE) quantifies
the average squared difference between predicted and actual
values, and it’s calculated as shown in the Equation 7.

MSE =
1
n

n∑
i=1

(Yi − Ŷi)2 (7)

where n represents the number of images, Yi denotes the
actual density maps for the ith image, and Ŷi stands for the
predicted density map for the ith image.

On the other hand, the Mean Absolute Error (MAE)
provides an average magnitude of errors between predicted
and actual values, calculated as the mean of absolute
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FIGURE 3. Visual representation of the training process, showing the density map generated from the annotations (top) and predicted by the model
(bottom).

differences shown in the Equation 8.

MAE =
1
n

n∑
i=1

|Yi − Ŷi| (8)

Again, n stands for the number of images, while Yi and Ŷi
represent the actual and predicted density maps for the ith

image, respectively.

D. CROSS-DOMAIN LEARNING
In the end, we implemented a cross-domain strategy,
specifically focusing on domain adaptation techniques, which
are widely utilized to address the challenge of limited labeled
data in the target domain. By leveraging labeled data from a
related source domain, this approach diminishes the need for
extensive labeled data specific to the target domain.

Domain adaptation involves transferring knowledge from
one domain to another, often distinct but connected. Con-
sequently, our methodology follows a two-step process:
initially, we pre-train the model on a source dataset closely
aligned with the target domain, and then, we fine-tune it on
the target dataset.

More in specific, the process begins with a labeled dataset,
where themodel is trained to learn patterns and features. After
the pretraining phase, the model is finetuned using the target
dataset. When applying the pre-trained model to a different
domain, such as the target dataset, disparities emerge due
to discrepancies between the two, which is known as the
‘‘domain shift’’ problem. For this reason, it is imperative to
choose a source dataset with similar backgrounds to those
in the target dataset, as backgrounds significantly influence
model learning. The pretraining phase it’s a very important
factor, most of all, in setting the weights of the first part
of the model, the feature extraction part (as presented in
Section III-C). In contrast, object shapes in the source domain
hold less significance, as they represent only a fraction of
the images and can be easily learned by the model. As a
consequence of this, in the source domain, the model gets
used to the dataset and starts localizing and counting the first
examples (also if with different shapes). In this phase it’s
not very important for the accuracy reached but the feature

extraction part, where the model learns how to recognize the
animals from the background. Once the model has reached
several epochs of pretraining or, if set, a threshold of accuracy,
it is finetuned in the target dataset. In this second phase,
the model applies what was learned in the source domain
to the new dataset. So it does not start from scratch but adapts
the knowledge that it has to the new domain, becoming more
expert to localize and count the requested target animal.

Formally, the source domain is denoted by S with
S = {(xsi , y

s
i )}

ns
i=1, where x

s
i denotes input data, ysi denotes

corresponding labels, and ns is the sample count. Similarly,
the target domain is denoted by T with T = {(x ti , y

t
i )}

nt
i=1,

where x ti represents input data, yti represents labels, and nt
is the sample count in the target domain dataset. Following
pretraining on the source domain S, we identify the optimal
model θ ′ (with minimal error) and fine-tune it on the target
domain T to obtain the final model θ∗, as illustrated in Fig.4.

IV. EXPERIMENTS AND RESULTS
In this section, we will conduct experiments in three distinct
areas. First, we will focus on manatees: our objective is
to train and test our model using the Manatee dataset.
Second, we will perform a cross-domain analysis, running
an ablation study and comparing results from two different
source domains. Finally, we will carry out generalization
experiments, where we apply our pretrained model to a
similar dataset, the Whale dataset, without fine-tuning, and
present the inference results.

A. EXPERIMENTS ON MANATEE DATASET
Our approach to the Manatee counting task involves the
method outlined in Section III on the Manatee dataset [33].
In contrast to previous approaches, such as those discussed in
Wang et al. [10], which primarily focused on narrow sections
of the manatee often confined to small bounding boxes in the
middle of its body, our methodology takes a different path.
To ensure accuracy and comprehensiveness, we carefully re-
annotated the entire dataset. This meticulous manual labeling
process resulted in novel and more reliable ground truth
labels, prioritizing the capture of the entire animal. These
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FIGURE 4. Domain adaptation scheme: pretrain the model (CSRNet) on source domain and fine-tune it on target domain.

FIGURE 5. Original image (left) and density map generated using our 2-D kernel function (right).

refined labels then formed the basis for generating our new
density maps, employing the 2-D kernel function described
in Section III-A (an example of a generated density map is
shown in Fig. 5).
In terms of the model selection, we opted for the CSRNET,

as explained in Section III-C, and we selected Mean Squared
Error (MSE) as the loss function and Mean Absolute
Error (MAE) as the evaluation function, as described in
Section III-C1.
Following the data preparation and model selection,

including the choice of model, dataset, loss function, and
evaluation criteria, we initiated the training phase.

The Manatee dataset [33] is made of 784 images in
total, so its quantity remains insufficient to effectively train
a deep model. To address this limitation, we adopted the
cross-domain technique outlined in Section III-D, dividing
the training process into two stages: pretraining and fine-
tuning.

For the pretraining phase, we opted, as source domain,
for the African Wildlife dataset from Kaggle [12], which
showcases various wild animals such as buffalos, elephants,
rhinos, and zebras (Fig. 6). Although these animals pos-
sess distinct shapes compared to manatees, they share
a commonality: they all dwell in natural settings with
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FIGURE 6. Images from the African Wildlife dataset from Kaggle [12].

backgrounds resembling those present in the Manatee
dataset [33].

This is a very important aspect for the domain shift
problem, so the adaptation of the pretrained model on this
domain to the target Manatee Dataset. This issue is managed
with the similar background images in both datasets and
a higher number of training epochs in the target domain,
to adapt it better to it.

This choice is intended to improve the model’s flexibility
and efficacy when fine-tuning the distinct features of manatee
images. Sowe selected 1504 random images from theAfrican
Wildlife dataset, resized them in 1280 × 720, and split them
into 1203 for Training, 150 for Validation, and 151 for Test
set.

During the pretraining stage, the model underwent training
on the African Wildlife dataset [12] for a total of 550 epochs,
achieving a Mean Absolute Error (MAE) of 3.98 on the
validation set. Given the nature of the African Wildlife
dataset, which predominantly features images with sparse
animal populations, this is considered a good outcome.
Typically, crowd-counting models excel with denser image
data; however, our primary interest wasn’t in maximizing
performance on this task. Instead, our focus shifted towards
the results of the fine-tuning stage.

Considering now the Manatee dataset [33] for the
finetuning phase comprises 784 images of manatees captured
from an aerial perspective above the water, and these
images are distributed into Training, Validation, and
Test sets, respectively 80% training and 10% valid and
test.

A significant issue arose from the fact that the Training set
consisted of 627 images, with only 247 (39.39% of the total
train images) featuring fewer than 5 manatees. The mismatch
posed a challenge for the model, limiting its accuracy in
predicting the number of manatees in images containing
only one or a few animals, due to the higher difficulties for
crowd-counting models to count when only a few samples
are present. To address this limitation, we implemented data
augmentation techniques, following the proposed pipeline in
Section III-B, applying random changes in brightness and
contrast (as shown in Fig. 7), utilizing PIL library [11],
to augment the samples with less than 5 manatees present.
As illustrated in Fig. 7, these random alterations not only

augment the dataset but also improve the visibility of
manatees in the images.

We constructed three distinct datasets for our experiment:
the original Manatee dataset [33], theManatee50 adding 50%
of augmented images containing less than 5 animals, and
the Manatee100 with 100% augmented images containing
less than 5 animals. The dataset dimensions are presented
in Table 1 together with the results of the finetuning phase
on each of them after 750 epochs. For better comprehension
and to align our results to the one presented by Wang et al.
[10], we divided the data into three primary groups: images
with a Low number of manatees (less than 5), Medium
manatee density images (between 5 and 20 manatees), and
High manatee density images (more than 20 manatees).

Table 1 highlights the challenges faced by the model
finetuned on the original Manatee dataset, particularly in
accurately identifying instances with few animals, such as in
the case of low manatee counts. Conversely, when trained
on the Manatee100, the model reached the convergence
point faster, after only 327 epochs, but it exhibits a strong
bias towards cases with low manatee counts, achieving high
accuracy due to the abundance of samples (56,52% of the
training set), but neglecting other groups.

Therefore, the most effective alternative appears to be
Manatee50 with only half of the images featuring a few
animals augmented (it has a number of images with less than
5 manatees equal to 49,33% of the training set). This dataset
strikes a balance between the representation of each group,
resulting in a more robust training process. Indeed, the model
trained on this dataset achieves the best overall performance
by focusing on all groups equally and reaching an MAE
of 1,69.

Table 1 illustrates significant and unexpected disparities,
particularly within theMedium andHigh groups, between the
original Manatee dataset and Manatee50. These differences
stem from the implicit instability observed during model
training for crowd-counting tasks. Specifically, in our training
process, we opted to preserve models with the lowest
Mean Absolute Error (MAE) across the Validation set.
Consequently, despite some models achieving even lower
MAE for the Low group, they were not retained because
the overall MAE on the validation set did not surpass
the best achieved. This decision, coupled with the training
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FIGURE 7. Examples of augmented images changing brightness and contrast (on the left the original image and on the right the augmented one).

TABLE 1. The table shows: the dimension of the Training set, the number of Low augmented samples, and results obtained on the Test set in Low (less
than 5 manatees images), Medium (between 5 and 20 manatees images), and High (more than 20 manatees per image) using CSRNet model trained for
750 epochs respectively on original Manatee dataset, 50% (dataset augmented with 50% of low image data on dataset) and 100% (dataset augmented
with 100% of low image data on dataset).

instability, led to results that were not consistently predictable
across various training instances. On the other hand, the best
MAE reached by the Manatee50 shows how balanced it is
between the groups and how much this aspect is important
to reach the best performances. The Mean Absolute Error
reached by the model training on Manatee50 is remarkably
impressive, indicating that our model’s predictions are off
by slightly more than one manatee and a half per image
on average. Indeed, as depicted in the last two rows of
Fig. 8, the predicted density maps closely match the ground
truths.

Moreover, for a comprehensive analysis of our achieved
results, we evaluated our top-performing model (fine-tuned
on Manatee50) on the test set, specifying the predicted
number of manatees for each group. The results, presented in
Table 2, demonstrate consistently low Mean Absolute Error
(MAE) across all groups. HigherMAE values observed in the
high manatee density group are solely attributed to the larger
number of animals in those images.

Examining the alignment between predicted and actual
manatee counts reveals a close correspondence across all

TABLE 2. Manatee counting results with respect to different densities
using the CSRNet model trained on Manatee50. Low, Medium, High
denote different levels of ground-truth manatee density in each image.

groups, affirming the model’s proficiency in predicting the
number of manatees. Despite the imbalanced distribution of
images per group in the test set, introduced by a randomized
Train-Validation-Test split to enhance reliability, balancing
the dataset by adjusting each group to include 19 images does
not alter the results. The model maintains its performance,
yielding a new test set error of 1.69, underscoring the model’s
consistency and reinforcing its status as state-of-the-art in this
task.

In the end, we compared our outcomes with those obtained
by Wang et al. [10]. As illustrated in Table 3, our model
achieved an improved MAE for each group as well as for the
entire test set, achieving a total MAE of 1.68. In contrast,
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FIGURE 8. Comparison of density maps from the test set using the state-of-the-art CSRNet models (dot, lines, and Anisotropic Gaussian), our and the
ground truth generated with the 2-D Gaussian kernel function.

TABLE 3. Experiment comparisons between the proposed method vs. a state-of-the-art manatee counting method published by Wang et al. [10].
Notation: dots: density maps created with dots, lines: density maps created with lines, anisotropy: density maps created with anisotropy Gaussian kernel.

previous state-of-the-art models typically yielded MAE
values of around 3, indicating a substantial improvement
of half the Mean Absolute Error and establishing a new
benchmark for the manatee counting task. This improvement
is also shown in Fig. 8, where is visible the difference
between the predictions made by our CSRNet model and
the preview ones. Our model, not only predicts counts that
closely match the actual number of manatees present but also

generates density maps that closely resemble the shape of the
ground truth. This significant enhancement is attributed to
the developed pipeline and the novel techniques applied in
data processing. Notably, the most significant advancement
introduced is the formulation of the 2-D kernel function,
which facilitates a more comprehensive representation of
the animals by spreading the values across the image. This
allows the model to gain a more accurate understanding of
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FIGURE 9. Comparison of density maps from the test set using our CSRNet and the ground truth generated with the 2-D Gaussian kernel function.
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FIGURE 10. Examples of the Malaria Dataset [36] (top row) and the Africa Wildlife Dataset [12] (bottom row).

TABLE 4. The table shows the results achieved from the CSRNet on the
Validation set after the pretraining phase (500 epochs) on the
corresponding dataset (second column: ‘‘Pretraining MAE’’) and after
the finetuning phase (750 epochs) on Manatee50 (third column: ‘‘MAE on
Manatee50’’).

the content of the bounding box. Additional examples to show
the accuracy of our model are reported in Fig. 9.

B. ABLATION STUDY ON CROSS-DOMAIN
The project faced major difficulties due to its cross-domain
learning. At first, we tried to train the model using a dataset
that included objects that have shapes resembling manatees.
We believed that the object’s shape would significantly
impact the model’s capacity to generalize well. However,
after carrying out the experiments, we realized that this
method did not yield the expected results. The key factor in
adjusting the model weights correctly during the fine-tuning
stage on the target domain was found to be the resemblance
in environment and background between the source and
target domains. This recognition changed our attention from
the form of the items to the situation in which they were
seen, emphasizing the significance of training the model on
datasets that closely resembled the environmental conditions
of the desired domain. This change was necessary to enhance
performance during the fine-tuning process and ultimately
enhance the accuracy and reliability of the model in spotting
manatees in their natural environment.

Two different datasets, the Malaria Dataset [36] and the
African Wildlife Dataset [12], are selected for validation.
As shown in Fig. 10, these datasets contain very different

images. The Malaria Dataset includes images of cells, which
can partially resemble manatees in shape since they are round
and sparse. However, the background is white, making it
quite different from the natural environment in the Manatee
Dataset. In contrast, the African Wildlife Dataset features
animals with shapes very different from manatees, but the
environment is quite similar, sharing similar colors and being
set in the wild.

The training phase was done by pretraining the CSRNet
model on each one of the two datasets. As shown in Table 4,
it reached an MAE (Mean Absolute Error) on the Validation
set of 5.02 in the Malaria Dataset and 3.98 in the African
WildLife after 500 epochs. The large difference in the Mean
Absolute Error is due to the fact that in the Malaria dataset,
there are a lot more cells to identify and predict rather than
animals in the African one, for this reason, theMAE is higher.
After the first phase, we tried to finetune the pre-trained
model in the target Dataset, the Augmented Manatee50 one.
After finetuning for 750 epochs, the model pre-trained on
the Malaria dataset reached a Mean Absolute Error on the
Validation set of 2.89, and the one pre-trained on African
WildLife of 1.40, as depicted in Table 4. This huge difference
shows that the hypothesis done before was correct, that is
to say, that the shape of the object is less important or
in most cases even irrelevant compared to the importance
of the background. So to have a good source domain to
apply cross-domain learning it’s absolutely mandatory that
the background is the same or very similar compared to the
one present in the source domain. For this reason for our main
experiment, we chose to use the African WildLife Dataset.

C. GENERALIZATION STUDY
To fully evaluate the strength of the proposed pipeline,
we tested our pre-trained model, trained on the Manatee
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FIGURE 11. Prediction of density maps on the test set of Whale Dataset [37] using our pretrained CSRNet and the ground truth generated with the 2-D
Gaussian kernel function (only for visual purposes).

dataset, on a similar domain: theWhale dataset [37]. This test
aimed to evaluate the generalization of the model’s acquired
knowledge to a similar environment. The Whale dataset was
chosen due to the similar top-down shape of manatees and
whales, providing a comparable visual perspective. However,
some images in the Whale dataset are significantly different
in backgrounds, as they were taken in the open sea, far from
the coast and most of the samples have only a few animals in
the scene, imposing challenges to our model.

Due to the limited number of samples in theWhale dataset,
we used its original training set to create the test set, which
comprised 77 images. The images were reshaped to match
the dimensions of those in the pre-trained model. After
running the inference, the model achieved a Mean Absolute

Error (MAE) of 2.06, demonstrating a good capability to
adapt to new tasks. The model performed well on images
with backgrounds similar to those in the Manatee dataset
but struggled with images that had significantly different
backgrounds. Although a model trained specifically on the
Whale dataset would likely achieve better performance, our
pre-trainedmodel still can serve as a strong baseline, showing
good generalization.

The results in Fig. 11 show that the model performs very
well on images similar to those in the Manatee dataset,
particularly in the first two rows. Specifically, the second
image, which has the exact same background as the original
target dataset, is predicted almost perfectly. On the other
hand, images with significantly different backgrounds are
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predicted less accurately. For example, in the last two
rows, the model predicts nearly 12 animals where there
are only two. The background plays a crucial role and can
easily mislead the model, resulting in incorrect predictions.
Additionally, in Fig. 11, we have included the density map of
the original image to provide a clearer visual understanding.

V. DISCUSSION
The current state-of-the-art models for this task, presented by
Wang et al. [10], are trained on theManatee Dataset, focusing
solely on localizing the center of the animal. These models
predict density maps generated using dot, line, or anisotropic
Gaussian notations. Each notation creates a codification
respectively with a dot, line, or slightly thicker line at the
center of the bounding box to identify the animal. While
Wang et al. achieved good overall results, encoding only
the center of the bounding boxes led to a significant loss of
information. Another limitation is introduced by the dataset
in fact the Manatee Dataset is made by a limited amount of
images, which doesn’t allow the model to generalize well
with new samples.

In this work, we proposed a pipeline to mitigate this
loss of information and address the limited data available.
Specifically, we introduced a new kernel function to encode
the entire bounding boxes without losing information,
ensuring the model focuses on the whole body of the
animal. Additionally, we re-labeled the dataset to create
more precise bounding boxes that encompass the entire
animal. Furthermore, to overcome the limited amount of
data, we implemented a cross-domain phase and applied
data augmentation techniques to train a more robust
model.

Ultimately, when comparing our proposed model with
previous state-of-the-art models, we achieved nearly half the
Mean Absolute Error on the test set, showing improvements
across all images, whether containing many or few samples.
These results demonstrate that our pipeline not only better
encodes all information during density map creation but also
effectively generalizes knowledge from the source domain to
the Manatee Dataset. Consequently, we consider our model
to be the new state-of-the-art for the manatee counting
task.

VI. CONCLUSION
This paper introduces an innovative pipeline designed to
enhance the performance of crowd-counting models, partic-
ularly in the task of counting manatees. The pipeline consists
of three key steps: generating density maps using a novel 2-D
kernel function, data augmentation for dataset balancing, and
cross-domain techniques to improve accuracy. More density
map predictions are available at the link on the GitHub
platform https://github.com/Matteozara/Manatee_count.git
together with the code to test and train the model.

While these steps have demonstrated promising results,
particularly in accurately predicting crowded images, chal-
lenges persist, notably in accurately counting images with

fewer and larger objects. Future efforts should focus on
generating images with fewer animals to better train the
model, possibly through fine-tuning Generative Adversarial
Networks (GANs) or Diffusion Models.

Additionally, there is a need to reduce the model’s
dimensions to enhance its speed and efficiency, thus facili-
tating real-time applications. This optimization would make
the model more accessible and user-friendly for scientists
working in the field of manatee or other animal conservation.
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