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VisRecall: Quantifying Information Visualisation
Recallability via Question Answering

Yao Wang, Chuhan Jiao, Mihai Bâce, and Andreas Bulling

Abstract—Despite its importance for assessing the effectiveness of communicating information visually, fine-grained recallability of
information visualisations has not been studied quantitatively so far. In this work, we propose a question-answering paradigm to study
visualisation recallability and present VisRecall — a novel dataset consisting of 200 visualisations that are annotated with
crowd-sourced human (N = 305) recallability scores obtained from 1,000 questions of five question types. Furthermore, we present the
first computational method to predict recallability of different visualisation elements, such as the title or specific data values. We report
detailed analyses of our method on VisRecall and demonstrate that it outperforms several baselines in overall recallability and FE-, F-,
RV-, and U-question recallability. Our work makes fundamental contributions towards a new generation of methods to assist designers
in optimising visualisations.

Index Terms—Information Visualisation, Recallability, Memorability, Machine Learning

✦

1 INTRODUCTION

Memorability is an intrinsic, global, and stimulus-driven
perceptual property that is important for better comprehen-
sion of visual stimuli [1, 2]. A growing body of work has
studied image recognisability – one of the most fundamental
attributes of memorability, both from a perceptual [1, 3]
and a computational [4, 5] perspective. Recognisability has
also been studied in information visualisations and previous
work has revealed specific attributes that make visualisa-
tions memorable [6]. Recognisability measures whether a
visualisation looks familiar or novel [3]. A visualisation that
has unique features may stand out more and may there-
fore be more memorable. However, recognisability does not
capture how effective a visualisation is in conveying infor-
mation to observers. Other works have therefore studied
recallability – a concept that goes beyond memorability, yet
is complementary to it [7], by quantifying what viewers
remember from a visualisation [8]. Despite its importance
and potential for designing better information visualisa-
tions, a deeper understanding of which characteristics of
visualisations influence recallability, and in which way, is
currently missing.

Current methods to assess recallability rely on visuali-
sation experts to assign a qualitative score to self-reported
free-text descriptions of viewers [7]. This approach is cum-
bersome and only provides a single score representing over-
all recallability while hiding the contribution of individual
visualisation characteristics. While Borkin et al. [7] noted
the importance of titles for recallability on visualisations,
Polatsek et al. [9] conducted three low-level analytical tasks,
focusing on visual elements with extrema, or specific val-
ues. These works inspired us to quantify visualisations’
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recallability by looking into specific types of visualisation
elements, such as the title, elements with extrema, or distinct
data points.

To quantify recallability, we propose to adopt a question-
answering paradigm, similar to visual question answering
(VQA) [10] that has become widely popular in computer vi-
sion. While originally introduced for natural images [10, 11],
a VQA dataset was also proposed for information visualisa-
tions [12]. In our work, instead of proposing computational
models of reasoning and correctly answering questions
about images, we evaluate the performance of human ob-
servers in answering questions about visualisations and use
their performance as a subjective measure of information
visualisation recallability.

In this work, to quantify fine-grained recallability of in-
formation visualisations, we design and execute a question-
answering based study to collect VisRecall: a novel visuali-
sation dataset with 200 visualisations, which contains 1,000
high-quality questions annotated by visualisation experts
and crowd-sourced human recallability scores. Our work
is inspired by and extends prior task taxonomy on visu-
alisations [9, 13] to define fine-grained recallability scores
through five question types: identifying the title or theme,
finding extrema, filtering data elements, retrieving values,
and understanding structure (subsection 3.1). Through our
analyses of VisRecall, we make several interesting findings:
the highest recallability across question types occurs in
questions that are about the title or the general theme (T-
question), which is significantly higher than other question
types. Moreover, a 10-second encoding duration is sufficient
for most visualisation types, including bar, pie, line, and scat-
ter plots. Based on VisRecall, we further present RecallNet,
a novel method based on convolutional neural networks
(CNNs) to predict one overall and five fine-grained recalla-
bility scores, one for each question type.

Our contribution is threefold: (1) We adapt a question-
answering paradigm to quantify overall and fine-grained
recallability of information visualisations. (2) We collect
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VisRecall, a novel visualisation dataset with human re-
callability scores (N = 305) from 1,000 questions and five
question types. (3) We propose a computational model that
predicts fine-grained recallability of visualisations. As such,
our work points the way towards new methods and tools to
create more effective information visualisations.

2 RELATED WORK

Our work is related to previous works on 1) image memora-
bility, 2) perception and memorability of visualisations, and
3) chart question answering (chart QA) datasets.

2.1 Image Memorability
A pioneering study [3] reported a strong capability of hu-
mans to recognise what they have seen before even up
to 10,000 images, which is denoted as “image recogni-
tion memory”. Isola et al. [4, 14] have demonstrated that
memorability is an observer-independent property, which
only depends on images [15, 16]. Furthermore, previous
studies have proven that memorability could be reliably
quantified for individual images by asking subjects to report
whether images are novel or familiar. Large-scale memora-
bility datasets have been collected for natural images, such
as SUN-Mem [4], Figrim [17] and LaMem [5]. With the
rise of deep learning, deep convolutional neural networks
were proposed as computational methods to predict image
memorability [5, 18, 19]. Recent work also integrated vi-
sual attention into the memorability prediction model [20].
Meanwhile, recallability is a complementary memory task
to visual recognition [21], which requires subjects to view
images and then recall what they have seen [22]. One
previous work found that sketch-based methodologies can
improve the recall of a sampling distribution from an ex-
periment [23]. Several recent studies are consistent with
the conclusion that image memorability variation may be
distinct for recognition and recall tasks [8, 24]. Based on
this, our work is the first to improve understanding of
recallability characteristics and the factors that influence it
on information visualisations.

2.2 Perception and Memorability of Visualisations
Pioneering works in the visualisation community have ex-
amined how different data types and tasks influence human
perception [25, 26, 27]. Inbar et al. [28] reported that people
prefer over-embellishment (i.e., “chart junk”) instead of
Tufte’s minimalist design [29]. Bateman et al. [30] further
claimed that the “chart junk” improves recognisability but
is not essential for understanding the visualisation. This
triggered a series of studies evaluating the impact of style on
memorability and comprehensibility [31, 32, 33]. The effect
of specific factors or components on recall memory has been
investigated, such as interaction [34], prior knowledge [35],
title [7, 36] and text redundancy [7]. Borkin et al. [6] studied
visualisation memorability on the MASSVIS dataset, and
their follow-up work [7] further conducted online crowd-
sourcing studies to quantify both recognisability and re-
callability. However, there are two main drawbacks to the
previous recallability quantification procedure. Firstly, the
method used to recall quality annotations is subjective and

cumbersome. In addition, visualisation experts are neces-
sary to attribute these scores. Secondly, the description qual-
ity score scale with only four possible values is too coarse
to represent a visualisation. To overcome these limitations,
we introduce question answering as a powerful paradigm
to quantify the recallability of information visualisations.
Through multiple questions and answers on different visu-
alisation characteristics, we propose a novel computational
model to predict not only overall but also fine-grained
recallability based on five different question types.

2.3 Chart Question Answering (Chart QA) Datasets

Despite the importance of information visualisations, chart
QA datasets have only been proposed in recent years.
FigureQA [12] was the first chart QA dataset. Images were
plotted in simple and fully synthesised visualisations in five
visualisation classes, along with polar questions. DVQA [37]
focused specifically on the problem of visual reasoning on
bar charts, which was used as a corpus for generating the
topic of chart QA. PlotQA [38] and LEAF-QA [39] synthe-
sised their question-answer pairs based on crowd-sourced
question templates from real-world data sources to increase
variety. One follow-up work collected human answers to the
DVQA dataset [40] as baselines, which inspired us to use the
human performance as a subjective measure of information
visualisation recallability.

As a conclusion, the question-answering setting has not
yet been used for memorability studies on visualisations,
and current chart QA datasets are synthesised from simple
templates with limited content, making it a distance away
from real-world visualisations. However, chart QA pro-
vides an interesting means to quantify recallability. In our
work, we evaluate and obtain recallability scores by asking
users questions and validating their answers. Therefore, we
present the design of our novel adaptation of a question-
answering-based study on information visualisations and
our novel VisRecall dataset in the next section.

3 VISRECALL DATASET

The currently available recallability scores on the visuali-
sation dataset MASSVIS [6, 7] are annotated from free-text
descriptions. However, its procedure to quantify recallabil-
ity is coarse and cumbersome. Meanwhile, visual question-
answering (VQA) datasets [10] selectively target elements of
visualisations in different question-answer pairs, making it
a suitable setting to quantify memorability objectively and
efficiently. Under the question-answering paradigm, differ-
ent tasks can be represented as different types of questions
to viewers, and consequently, recallability is quantified by
the accuracy in answering those questions.

Towards quantifying recallability, we propose the Visual-
isation Recallability Dataset (VisRecall) — a dataset consist-
ing of 200 real-world information visualisations with crowd-
sourced human recallability scores (N = 305) obtained from
1,000 questions in five question types (see Figure 1). Vi-
sualisations in our dataset are mainly sourced from the
MASSVIS dataset [6] to enable better alignment with prior
works on this topic. The recognisability scores are also col-
lected to replicate the previous memorability studies [6, 7].
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Q: What is the theme of this visualization?
A: Ageing of population
B: Urbanisation
C: Population growth
D: I cannot remember
Q: Which area had the lowest level of urbanization in 1950?
A: China
B: India
C: South-East Asia
D: I cannot remember
Q: By 2045, which area is expected to have the highest level of urbanization?
A: US
B: Western Europe
C: Brazil
D: I cannot remember
Q: What percentage of Indians are expected to live in urban areas by 2045?
A: about 50%
B: about 60%
C: about 70%
D: I cannot remember

Fig. 1: Sample visualisation with multiple-choice questions from VisRecall. Five types of questions were designed by
experts, which are questions regarding the title (T-questions), understanding structure or trend (U-questions), finding
extrema (FE-questions), filtering elements (F-questions) and retrieving values (RV-questions). Each figure has at least two
question types. The correct answer to each question is shown in bold. Image sourced from MASSVIS [6].

Our dataset and code are accessible at: https://doi.org/10.
18419/darus-2826

3.1 Visualisation Collection and Question Types
We randomly selected a subset of 200 visualisations from the
MASSVIS dataset [6]. Notably, we excluded all infographics
from our collection, since infographics have the highest
recognisability and recallability compared to all other types
of visualisations [7]. However, scatter plots represented
only 5 % of the sampled subset. Therefore, we collected 20
additional scatter plot visualisations by crawling the web
through search engines (Google, Bing) using the keyword
“scatter plots”. Then, we replaced some bar plots with the
web-crawled plots to balance the visualisation type classes.
The final distribution of visualisation types is: 56 bar plots,
45 line plots, 27 scatter plots, 22 pie plots, 25 tables and 25
others. Those visualisations that don’t belong to any of the
first five types are categorised as others, including box charts,
isotype charts, and other complex visualisations.

When creating the questions for our VisRecall dataset,
we had to identify question types that are not only suitable
for static information visualisations, since our images are
primarily sourced from the MASSVIS dataset but also appli-
cable to all visualisations. Therefore, inspired by prior work,
we selected five question types: T-questions, U-questions,
FE-questions, F-questions, and RV-questions. T-questions
were questions regarding the title or the visualisation theme,
which were used to analyse how the existence of the title
influenced the description scores of visualisation recalla-
bility [7]. U-questions were about understanding the plot
structure [38] or the general trend [39]. For the remaining
three question types, we followed the work by Polatsek
et al. [9] who picked these question types for the visu-
alisation types from MASSVIS. The three question types
were FE-questions (finding an extremum attribute value), F-
questions (filtering visualisation elements based on specific
criteria) and RV-questions (retrieving values for a specific
visualisation element).

All question-answering data were created by five data
visualisation experts. They were asked to provide five

questions per visualisation, and every visualisation has at
least two question types. Each question corresponds to
four possible answer options. Only one option is correct,
two other options are choices with similar, yet incorrect
answers, and the last option is always “I cannot remem-
ber”. See supplementary material for question examples. All
annotations were saved separately in standard JSON files
for each visualisation. There are 193, 150, 178, 99, and 64
visualisations in VisRecall that have at least one T-, FE-, F-,
RV-, and U-question, respectively.

T-question. T-questions are about the title or the general
theme of the plot and do not require any reasoning. Example
questions: What is the title of the visualisation?, What is the
theme of the visualisation? For the incorrect choices in T-
questions, we either replaced keywords or phrases with
words of similar, but different meanings, such as changing
car thefts to car accidents or car manufacturers, or using titles
from other visualisations, such as using Expectations On
House Prices Above 2009 Projections and HIV Prevalence in
Women Aged 15-49 Years by Region, 1990-2007 as incorrect
choices for Covered Transactions by Sector and Year, 2009-2011.

FE-question. These are questions about finding extreme
values in the visualisation that fulfil certain conditions,
without asking any exact numbers. Example questions:
Which area had the lowest level of urbanization in 1950?, and
Which particle is the latest discovered? We used other ele-
ments that appeared in the visualisation as incorrect answer
choices. As seen in Figure 1, India and South-East Asia were
the incorrect alternative choices for China in the question
Which area had the lowest level of urbanization in 1950?.

F-question. These are questions about filtering data ele-
ments based on specific criteria. Example questions: Which
particle is Bosons? and What is the source of the data? For F-
questions, we either changed keywords to their synonyms,
or used other elements that appeared in visualisations as
incorrect alternative choices, such as using Electron and
Muon for Photon in the question Which particle is Bosons?.

RV-question. These are questions about retrieving a
specific value located in the plot. Example questions: What
is the maximum percentage of aid allocated? and What percentage
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Fig. 2: Experiment design. From left to right: Visualisations are shown to viewers for a fixed duration in the “Encoding”
phase. In the “Recall” phase, visualisations are blurred and each has a multiple-choice question next to it with a single
correct answer. Finally, visualisations are shown to viewers for 2 seconds in the “Recognition” phase. The numbers in the
circular arrows indicate the number of repetitions.

of Indians are expected to live in urban areas by 2045? (see
Figure 1). Example incorrect choices: about 60 % and about
70 % for What percentage of Indians are expected to live in urban
areas by 2045?, and the correct answer is about 50 %.

U-question. These are questions about understanding
the structure or the trend of a visualisation. Example ques-
tions: What does the purple curve represent? and What decreases
as time goes by? Example incorrect choices: for structure
questions, other elements appearing in the visualisation are
used, such as using Red and Blue as incorrect choices for
Green in the question What color stands for Residents? As
for questions about understanding trends, the choices are
increasing, decreasing and almost the same.

3.2 Crowd-sourcing Study Set-up & Participants

Our study design is illustrated in Figure 2. In the encod-
ing phase of our study, study participants were shown
a sequence of visualisations for a fixed duration. We fol-
lowed the 10-second encoding phase in a prior memorability
study [6], and also conducted the study with a 20-second
encoding phase to see the impact of encoding duration on
recallability. We asked participants to memorise as much of
the information presented in each visualisation as possible.
To advance from the encoding phase to the recall phase, our
study participants had to click on the “next” button. In the
recall phase, each visualisation was shown at 50% of the size
from the encoding phase and blurred by a 24-pixel Gaussian
filter to make the text unreadable. The question orders were
predefined to avoid the situation where some questions
might provide answers to other questions. The blurry visu-
alisation was shown with a single multiple-choice question.
The presentation order of the first three multiple-choice
options for each question was randomly shuffled once and
fixed for all participants, while the option I cannot remember
always appeared last. The following question would be
shown only if the participant clicked the next button, and

they could not return to the previous question. This setting
was to avoid providing hints in upcoming questions. Before
running our user study, we did preliminary tests with three
designs: showing visualisations one-by-one, two-by-two,
and four-by-four. In the one-by-one setting, we found the
task too easy with very high recallability scores. The four-
by-four task, i.e. first encoding four different visualisations
before the recall phase, was found too difficult. Therefore, as
a trade-off and to reduce the effect of working memory [41],
we empirically selected the two-by-two setting for our user
study. In each set, the encoding phase of two images were
presented, followed by their recall phase, before repeating
the process for the next set of two images. Then, the recog-
nition phase involved an online memorability game similar
to prior work [6]. Study participants were presented with
a sequence of images, and they had to select if they had
seen this visualisation before. In each Human Intelligence
Task (HIT), 40 blurred images were shown for 2 seconds
each. The images in the recognition phase contained 20
visualisations that were the same in the recall phase, and
20 fillers from a different group. Finally, participants were
asked to provide anonymous feedback on the study design
in a questionnaire.

To support the study, we implemented the procedures in
a web application. We then integrated our application into
an existing crowd-sourcing toolbox that worked well with
the Amazon Mechanical Turk (MTurk) platform [42]. We
deployed our experiment on MTurk to collect recallability
and recognisability scores on all 200 visualisations, splitting
them randomly into ten groups of 20 visualisations per HIT.
Visualisation types were balanced among all groups (see
Figure 1 in supplementary material). MTurk workers could
participate in multiple HITs. To participate in one of our
HITs, a worker had to be a Master Worker approved by
MTurk as a quality check. Master Workers are top workers
rated by MTurk who have consistently demonstrated high
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Fig. 3: Recall and Recognition accuracy over all 404 HITs.
Participants can recognise most of the visualisations easily,
but only answer less than half of the questions correctly.

quality work. Workers were paid $ 4.00 for completing each
HIT. To ensure data quality, we filtered out 467 HITs (305
workers) if the answers were all “Yes” or “No” in the recog-
nition task. For each visualisation, we received an average of
40.4 (σ = 16.9) valid responses. All workers were distributed
in various educational levels: 8.2 % two-year degree, 56.9 %
four-year degree, 22.3 % master’s degree or higher, and
12.6 % other / unreported. The age groups were 44.1 % in
25 - 34, 28.5 % in 35 - 44, 12.4 % in 45 - 54 and 9.9 % over 55. In
the anonymous feedback form at the end of our study, most
workers responded positively, with two examples being:
“Great self test for capable of memory power” and “After
taking survey, I’m really getting interested in learning data
plots and visualisations”.

3.3 Data Analysis

Recallability Formulation. For each question, we measured
the recall accuracy as follows: Acc = RA

RA+WA , where RA
is the number of correct answers, and WA is the number of
wrong answers, including the number of I cannot remember
answers. If we focus on viewers who have selected choices
excluding I cannot remember, the accuracy can be computed
as: Acc′ = RA

RA+WA−CNR , where CNR stands for the num-
ber of I cannot remember. Averaging all questions of type t in
a visualisation gives us the recallability by question type and
is computed as: Rect = 1

n

∑n
i=1 Acc(i), questioni ∈ t. By

averaging all questions in a visualisation, we have the over-
all recallability of a visualisation as: Rec = 1

n

∑n
i=1 Acc(i).

HIT-wise Recallability. HIT-wise recallability as well as
recognition accuracy across HITs (N = 404) are shown in
Figure 3. 63.9 % of HITs have a recognition accuracy higher
than 0.85, and 34.83 % are higher than 0.95, which shows
that our study participants could easily recognise most of
the visualisations (µ= 0.83). Meanwhile, they could only
answer less than half of the questions correctly (µ= 0.49).

Fine-grained Recallability by Question Type. Figure 4
illustrates that T-questions have the highest recall accuracy
among all question types both when including I cannot re-
member (µ= 0.66), and excluding I cannot remember (µ= 0.69).
The accuracy of T-questions is significantly higher than

          0.66 0.430.70 0.55 0.46 0.57 0.40 0.53 0.48 0.54

Fig. 4: Recallability scores by question type. T-questions
have significantly higher recallability scores than all other
question types (FE-, F-, RV-, and U-questions). Additionally,
24.7 % of the viewers selected I cannot remember in RV-
questions, while only 5.1 % of the viewers selected I cannot
remember in T-questions.

 0.47 0.60  0.58  0.48  0.62  0.54  0.64  0.52  0.64 0.47  0.48  0.63

Fig. 5: Recallability scores by visualisation type. Pie plots
have significantly higher recallability scores compared with
all other visualisation types (bar, line, scatter plots, tables,
and others).

other question types (t (1969) = 18.87, p < 0.001). 24.7 % of
viewers selected I cannot remember in RV-questions, and
21.4 %, 18.8 %, 11.7 % for FE-, F- and U-questions, respec-
tively. Only 5.1 % of the study participants selected I cannot
remember in T-questions. We observed a mean proportion
of 19.1 % (σ = 13.0 %) of study participants who selected I
cannot remember in all visualisations. The lowest proportion
is 3 %, while more than 50 % of participants selected I cannot
remember in seven visualisations. Figure 8 shows visualisa-
tions with the most and least I cannot remember answers from
VisRecall. We observe that a high visualisation complexity is
common among those visualisations with the most I cannot
remember answers.

Fine-grained Recallability by Visualisation Type. Fig-
ure 5 illustrates the recallability scores by visualisation type.
A one-way ANOVA test is applied across visualisation
types, and we observed a significant difference for both
excluding I cannot remember (F = 4.412, p < 0.001), and includ-
ing I cannot remember (F = 6.916, p < 0.001). Post-hoc analy-
ses with Tukey’s HSD [43] confirmed that the recallability
scores of pie plots are significantly higher than any other
visualisation types including I cannot remember (for all pairs,
p < 0.001). For excluding I cannot remember, line plots are
significantly lower than pie plots (t = 3.725, p = 0.003) and
others (t = 3.458, p = 0.007).
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          0.64 0.510.74 0.57 0.52 0.62 0.42 0.52 0.56 0.60

Fig. 6: Recallability scores under a 10-second and 20-second
encoding phase by question type in one MTurk group.

 0.61 0.64  0.65  0.53  0.53  0.60  0.66  0.51  0.61 0.57  0.55  0.65

Fig. 7: Recallability scores under a 10-second and 20-second
encoding phase by visualisation type in the same MTurk
group as Figure 7.

Encoding Duration. The study of the 20-second en-
coding phase was conducted in two randomly selected
MTurk groups. We observed significant improvement of
recallability in one group (t (198) = 2.284, p = 0.023) from
10-second (µ= 0.51, σ = 0.51) to 20-second encoding phase
(µ= 0.57, σ = 0.22), but not in the other group (t (198) = 1.627,
p = 0.105). The recallability scores by question type is shown
in Figure 6. Prolonging the 10-second encoding phase
to 20 seconds, the recallability scores of each question
type all increased. No significant improvements of re-
callability scores were found in T-questions (t (59) = 1.367,
p > 0.05), F-questions (t (59) = 1.796, p > 0.05), FE-questions
(t (59) = 1.474, p > 0.05), RV-questions (t (59) = 1.951, p > 0.05),
or U-questions (t (59) = 0.830, p > 0.05). Figure 7 illus-
trates the recallability scores by visualisation type. Sig-
nificant improvements of recallability scores are found
in tables (t (59) = 2.144, p = 0.036) and others (t (59) = 2.969,
p = 0.009), but not in pie plots (t (59) = 1.141, p > 0.05),
bar plots (t (59) = 1.675, p > 0.05), line plots (t (59) = 1.052,
p > 0.05), or scatter plots (t (59) = 0.817, p > 0.05).

Recallability and Recognisability: a Comparison to
Prior Work. To the best of our knowledge, the description
quality in [7] is the closest work to ours on the quantifi-
cation of recallability, where free text descriptions of what
participants recall about the visualisations were recorded.
Description quality was rated from 0 to 3 where 0 was
a completely incorrect description, and 3 was a precise
description regarding the topic and at least one detail [7].
We found 31 visualisations with description quality in
our VisRecall dataset, and calculated the average descrip-

tion quality scores and the mean visualisation accuracy of
all questions in the overlapped visualisations. The Pear-
son’s correlated coefficient (CC) between description quality
scores and mean visualisation accuracy is 0.36 with I cannot
remember, while it is 0.35 without I cannot remember.

For a comparison to prior work on recognisability [6, 7],
we also calculated the memorability (or recognisability)
score on VisRecall. According to Borkin et al. [6], the hit
rate (HR) and false alarm rate (FAR) were computed as:
HR = HITS

HITS+MISSES and FAR = FA
FA+CR . Then, the

recognisability (memorability) of a visualisation was mea-
sured as: d′ = Z(HR)− Z(FAR), where Z was the inverse
cumulative Gaussian distribution. Figure 9 (left) shows the
distribution of the raw HR scores of all visualisations from
the recognition phase. Figure 9 (right) shows the highest and
lowest ranked visualisations across recognisability (memo-
rability) and recallability from our VisRecall dataset. The
full memorability (recognisability) and recallability scores of
all visualisations are available in supplementary material.
Visualisations in each quadrant were ranked highest or
lowest 15 % among all visualisations.

Data-ink ratio. Data-ink ratio is a commonly used visual
attribute introduced by Tufte et al. [44]. A high data-ink
ratio visualisation contains a large share of ink presenting
information about data. Following the previous annotation
procedure in [7], three visualisation researchers indepen-
dently rated the data-ink ratio for each visualisation in the
VisRecall dataset. Data-ink ratio was rated from 1 to 3 where
1 was a low propotion of ink that was related to data, and
3 was high. The ranking was directly applied if more than
two researchers agreed. In cases when all three researchers
gave different rankings, the visualisation was reviewed and
discussed by all three researchers for a consensus. We ob-
served that the high data-ink ratio group has the highest
recallability score (µ= 0.621), compared with µ= 0.599 for
the middle data-ink ratio, and µ= 0.606 for the low data-ink
ratio. A one-way ANOVA test was applied between data-
ink ratio groups. Still, no significance was observed in either
excluding I cannot remember (F = 1.134, p = 0.322) or including
I cannot remember (F = 2.43, p = 0.088).

Visual Density. Visual density is another visual attribute
to rate the overall density of visual elements without dis-
tinguishing between data and non-data elements [6]. The
annotation procedure of visual density was the same as
data-ink ratio. Visual density was rated from 1 to 3 where 1
was low density of visual elements in the visualisation, and
3 was high. We observed that the high visual density group
has the highest recallability score (µ= 0.619), compared with
µ= 0.608 for middle visual density, and µ= 0.600 for low
visual density. A one-way ANOVA test is applied across
visual density groups, but no significance is observed in
either excluding I cannot remember (F = 0.740, p = 0.478) or
including I cannot remember (F = 0.245, p = 0.782).

4 COMPUTATIONAL MODEL FOR PREDICTING FINE-
GRAINED RECALLABILITY

Our analyses on VisRecall yielded several insights on re-
callability in information visualisations. There are currently
no baseline methods, for predicting either overall recalla-
bility or fine-grained recallability. Existing computational
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Most “I cannot remember” selected

Fig. 8: Example visualisations with the most and fewest answers I cannot remember from VisRecall. We observed a higher
degree of visualisation complexity for those with multiple I cannot remember answers.
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Fig. 9: Left: Raw hit rate (HR) of target visualisations from the recognition phase. Right: The highest and lowest ranked
visualisations (within 15 %) across recognisability (memorability) and recallability in VisRecall. The x-axis represents the
recallability score computed from overall visualisation question accuracy (independent of question type), and the y-axis
represents the memorability score from previous work [7].

models only aimed at predicting memorability, also known
as recognisability [5, 20]. Therefore, we propose Recallability
Network (RecallNet), a lightweight and effective neural
network for recallability prediction.

4.1 Model Architecture

We extend and build on state-of-the-art architectures from
other computer vision tasks, such as semantic segmen-
tation [45, 46] and image classification [47, 48], and use
such methods as the backbone of our architecture. We
design our RecallNet with the specific goal of predicting
both overall and fine-grained recallability scores in one
single model (see Figure 10 for an overview). Inspired by
UMSI [49], the current state-of-the-art architecture for visual
importance prediction on graphic designs, we employ the
Xception [45] model to effectively encode spatial informa-
tion. Then, a global average pooling layer, a dense layer
with 256 neurons, and finally a dense layer with 2 neurons
are sequentially connected. One output neuron predicts the
general recallability score, and the other one predicts the
fine-grained recallability score.

4.2 Implementation Details & Model Training

We trained RecallNet using weights obtained from the
Xception model – which was pretrained on ImageNet [50].
RecallNet was trained with the Adam [51] optimizer with
a learning rate of 0.002 and 1:1 Mean Squared Error (MSE)
joint loss for the two branches predicting the overall recalla-
bility score and the fine-grained recallability score. We aver-
aged all five questions for each image to prepare the ground
truth of overall recallability scores. To train our RecallNet to
predict fine-grained recallability scores for a certain question
type, we only used those visualisations that contained that
question type from VisRecall. There are 193, 150, 178, 99,
and 64 visualisations with at least one T-, FE-, F-, RV-,
and U-question, respectively. Five-fold cross-validation was
applied to all evaluation processes. All experiments were
conducted on a single NVIDIA 2060 Super GPU with 8GB
VRAM.

Baseline Methods. Since no previous computational
models focused on predicting recallability on visualisations,
we designed three methods as baselines. We replaced the
Xception feature encoder in RecallNet with VGG-16 [47]
and ResNet-34 [48] as the two baselines. We trained all
baseline models for 10 epochs on VisRecall starting from
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Fig. 10: Method overview. RecallNet leverages the Xception model [45] to effectively encode spatial information. Then, a
global average pooling layer, a dense layer with 256 neurons, and finally a dense layer with 2 neurons are sequentially
connected. One output neuron predicts the general recallability score, and the other one predicts the fine-grained
recallability score.

ImageNet [50] pretrained weights. We used the Adam op-
timizer [51] with a learning rate of 0.002 and MSE loss for
training.

4.3 Model Evaluation
The prediction error is calculated as the mean squared error
between the human and the predicted recallability scores.
We compared the prediction error of our RecallNet method
to the two baselines VGG-16 and ResNet-34. Table 1 sum-
marises fine-grained recallability prediction error on Vis-
Recall under a 5-fold cross-validation evaluation. We used
the MSE to evaluate the prediction error. Results showed
that RecallNet outperformed the baselines under overall
recallability and four fine-grained recallability scores, with a
MSE of 0.035 for overall recallability, and 0.021, 0.022, 0.017,
0.043 for FE-, F-, RV-, and U-questions respectively. ResNet-
34 was the best performing method for T-questions with a
MSE of 0.047, while our RecallNet was second with a MSE
of 0.052.

Ablation study. We further carried out an ablation study
to investigate how each fine-grained recallability score influ-
ences overall recallability (see Table 2). With RecallNet, the
overall recallability trained with T-questions has the lowest
MSE of 0.030 and the most stable variance of 0.006. With
ResNet-34 [48], the overall recallability trained with RV-
questions has the lowest MSE of 0.029 and the most stable
variance of 0.008. With VGG-16, the overall recallability
trained with T-questions has the lowest MSE of 0.037 and
the most stable variance of 0.007.

5 DISCUSSION

First, we underline the novelty of VisRecall and its potential
in applications such as chart QA [12]. Second, we discuss
how recallability and recognisability are different yet con-
nected. Then, several interesting insights from our analyses
are reported. Finally, the limitations and future work are
discussed.

VisRecall Dataset. VisRecall is the first dataset to intro-
duce fine-grained recallability on an information visualisa-
tion dataset as well as high-quality question-answering an-
notations. The recallability scores are metrics that reveal hu-
man performance with a specific type of question. With rich

annotations of the elements necessary for the answers, the
recallability score of a certain question could be converted
into 2D spatial representations (e.g. recallability heatmaps).
The recallability maps could be introduced as an addi-
tional feature input to downstream tasks, such as chart QA.
Additionally, VisRecall is a novel visualisation question-
answering dataset that uses real-world, visually rich visu-
alisations coming in part from the MASSVIS dataset. The
questions for chart QA datasets [38, 39] were collected by
regular crowd workers. In contrast, all the questions in our
VisRecall came from visualisation experts, which promises
a higher quality of questions than chart QA datasets. More-
over, most visualisations in chart QA datasets [38] are
generated pragmatically. However, when it comes to real-
world visualisations, the structural information is usually
missing, and researchers have to retrieve it, often by manual
annotation [7], which is time-consuming and constrains the
dataset size. The introduction of recallability to the question-
answering setting and the high quality of visualisations and
questions enable VisRecall to trigger fundamental studies
on chart QA.

Recallability vs. Recognisability (Memorability). The
bottom-right quadrant in Figure 9 (right) is completely
empty, which means that there are no such visualisations
with high recallability (top 15 %) and low memorability (bot-
tom 15 %) in VisRecall. This means that visualisations have to
be sufficiently memorable before they become recallable. The vi-
sualisations in the top-right quadrant share some character-
istics, like a big and highlighted title and some explanatory
text. Meanwhile, the visualisations in the top-left quadrant
of Figure 9 (right) have high recognisability and low recalla-
bility. Compared to the top-right quadrant, visualisations in
the top-left quadrant are less recallable. All visualisations
in the top-left quadrant are simple monotone plots with
few embellishment (e.g. isotype plots). The visualisations
in the bottom-left quadrant are easily forgettable and hard
to recall. These visualisations are usually overly complex
and don’t have meaningful titles or additional explanatory
text to convey key messages. Compared to the bottom-left
quadrant, all the visualisations in the top-left and top-right
quadrant are always with titles, which aligns well with the
findings in previous studies [6, 7]. However, the recallability
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TABLE 1: Prediction error (MSE) of fine-grained recallability on VisRecall under 5-fold cross-validation evaluation. Best
results are shown in bold, second-best are underlined.

Methods Overall T FE F RV U

RecallNet (ours) 0.035± 0.005 0.052± 0.009 0.021± 0.003 0.022± 0.004 0.017± 0.004 0.043± 0.025
ResNet-34 [48] 0.043± 0.013 0.047± 0.015 0.068± 0.024 0.070± 0.042 0.043± 0.008 0.050± 0.018
VGG-16 [47] 0.036± 0.013 0.053± 0.017 0.054± 0.019 0.076± 0.029 0.057± 0.010 0.059± 0.025

TABLE 2: Ablation study on the prediction error (MSE) of how fine-grained recallability influences the overall recallability.
Best results in each row are shown in bold.

Methods T FE F RV U

RecallNet (ours) 0.030± 0.006 0.079± 0.052 0.032± 0.008 0.035± 0.013 0.172± 0.215
ResNet-34 [48] 0.043± 0.013 0.078± 0.087 0.060± 0.035 0.029± 0.008 0.033± 0.013
VGG-16 [47] 0.037± 0.007 0.046± 0.022 0.041± 0.019 0.079± 0.053 0.077± 0.011

between the data-ink ratio and visual density groups is
not significantly different. Either those visual features are
not highly correlated with recallability, or the size of our
VisRecall prevented the confirmation of significance. Nev-
ertheless, our study on VisRecall validated previous results
and provided interesting insights into how recallability and
recognisability (memorability) are different yet connected.

Free Recall vs. Question-Answering-cued Recall. The
low correlated relationship (CC = 0.35) between description
quality [7] and our recallability score drew our attention.
The description quality generated from prior work was
from free-text descriptions without any context, but our
recallability was computed from the mean accuracy of
five multiple-choice questions per image. The low corre-
lated relationship suggests that the information (context) in
multiple-choice questions might be an essential factor that
influenced recallability. One possible explanation is that our
study provided cues for visualisations which mitigated the
memory decaying process (forgetting) [52].

Impact of Encoding Duration on Recallability. The
analysis on encoding duration provided several insights (see
Figures 6 and 7). Those text-heavy and complex visualisa-
tions (tables, others) are more sensitive to viewing duration,
and a 10-second encoding phase is sufficient for most basic
visualisation types (pie, bar, line, and scatter plots). Filtering
data and retrieving value questions (F- and RV-questions)
gained quasi-significant improvement in one of the MTurk
groups, while no significance was found for the other three
question types (T-, FE-, and U-questions). It suggests that
a more prolonged encoding phase is more beneficial to
those questions that require detailed answers (F- and RV-
questions).

Limitations. There is always a trade-off between quality
and quantity, which was also the case when designing and
collecting our VisRecall dataset. Due to the increasing work-
load in designing high-quality questions for the question-
answering settings specifically targeted for each visuali-
sation, the scale of VisRecall became relatively small. We
conducted a preliminary evaluation using Grad-CAM [53],
which is a method used for understanding and explaining
the predictive behaviour of CNN-based models. However,
our qualitative analysis did not reveal any generalisable pat-
terns that can be directly linked to higher-level visualisation
features such as visual density or data-ink ratio. To allow
more explainable models for recallability prediction, it is

essential to extend the size of VisRecall.
Future Work. How recallability can be applied to reality

is a fundamental question. Visualisation type recommen-
dation is one practical use case for a visualisation recom-
mendation system [54]. Prior research has proposed ways
to decide whether line or scatter plots are more suitable for
time series data [55]. One possible application is to make
use of recallability scores to recommend a visualisation type
for given data. For visualisations that demonstrate the same
data but with different visualisation types, our RecallNet
might be useful in recommending a visualisation type that
maximises recallability.

In the future, we plan to enrich VisRecall with more
complex visualisation types such as box, radar and com-
bination plots. Furthermore, gaze behaviour analysis in a
question-answering setting on information visualisations
has not yet been studied. However, it is a fundamental
step to understand the human visual attention system while
viewing visualisations. While physical laboratory studies
require special-purpose eye tracking equipment, online
crowd-sourcing studies or gaze estimation from substitu-
tion devices (e.g., mouse, web camera) can be used as a
proxy to human attention. In the future, we will investigate
such methods to collect human attention data and extend
VisRecall with such annotations.

6 CONCLUSION

This work presented a novel adaptation of a question-
answering-based study to collect VisRecall, a novel visu-
alisation dataset with 200 real-world visualisations anno-
tated with crowd-sourced human recallability scores in five
question types, along with a deep convolutional network to
predict fine-grained recallability of visualisations. Overall,
this work made a substantial leap towards quantifying fine-
grained recallability scores on information visualisations
and envisions several potential applications, such as visu-
alisation optimisation.
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