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ABSTRACT
Eye tracking research in human-computer interaction and
experimental psychology traditionally focuses on stationary
devices and a small number of common eye movements.
The advent of pervasive eye tracking promises new appli-
cations, such as eye-based mental health monitoring or eye-
based activity and context recognition. These applications
might require further research on additional eye movement
types such as smooth pursuits and the vestibulo-ocular reflex
as these movements have not been studied as extensively as
saccades, fixations and blinks. In this paper we report our
first step towards an effective discrimination of these move-
ments. In a user study we collect naturalistic eye movements
from 19 people using the two most common measurement
techniques (EOG and IR-based). We develop a set of basic
signal features that we extract from the collected eye move-
ment data and show that a feature-based approach has the
potential to discriminate between saccades, smooth pursuits,
and vestibulo-ocular reflex movements.
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INTRODUCTION
Eye tracking has been an increasingly researched topic in
the last decades, especially in human-computer interaction
(HCI) and experimental psychology. In both fields, researchers
traditionally use stationary eye tracking to investigate the
main eye movement types: fixations (when the eyes are still),
saccades (the fast movement of the eyes to a new location)
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and blinks. Typically, these movements are the basis for ex-
tracting a small number of specific characteristics such as
the blink rate or the fixation duration.

The advent of pervasive eye tracking, that is tracking move-
ment of the eyes for several hours or even days using mobile
and wearable eye tracking systems, opens up new applica-
tions areas, particularly at the crossroads of ubiquitous com-
puting and HCI. It is now conceivable to imagine eye track-
ers to become part of our everyday lives within the next 10
years. Such systems will be integrated into ordinary glasses,
interactive displays or devices used for a specific task [3].
Potential applications of pervasive eye tracking include ac-
tivity and context recognition [4], feedback systems for im-
proving reading performance or eye-based mental health mon-
itoring.

There has been extensive work on the effect of mental ill-
nesses, such as Alzheimer’s, on eye movements, particularly
on smooth pursuit movements [6, 11, 7, 10]. Smooth pur-
suit are the movement of the eyes when following a moving
target, such as a bird or a car. Being able to monitor and
automatically analyse smooth pursuit movements may allow
us to detect an early onset of such mental diseases. Another
type of movement that has not been studied much is the vi-
sual reflex to keep a precise point in sight while moving the
head, known as Vestibulo-Ocular Reflex (VOR). We could
imagine a TV set or a mobile phone that would answer to
eye gestures [5] where the user moves their head (thus their
eyes, staying focused on the screen) to command it without
looking away.

With the growing potential of pervasive eye tracking comes
the need to develop algorithms and methods specifically geared
towards mobile settings. These settings require a more gen-
eral framework for eye movement analysis including new al-
gorithms to detect the eye movements and more immediate
interaction. The requirements for such a framework are low
computational costs, real-time analysis, robustness against
artefacts and a good recognition performance. When con-
sidering eye movement detection, evidence is there is a lack
of algorithm to detect all of these movements altogether in
real time. There has been extensive research on saccades,
fixations and blinks detection [13, 8, 9] and recent develop-
ments to detect them online [12, 2], yet no algorithm detects
smooth pursuit or VOR in a generic fashion alongside with
these well-studied movements.
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Figure 1. Experimental setup including (1) the EOG electrodes (the
green electrode is the reference), the Dikablis eye tracker (2), and the
inertial measurement unit from XSens (3).

Goal and Contributions
This work-in-progress paper represents the first step towards
a complete online algorithm for the detection of saccades,
fixations, blinks, smooth pursuit and VOR from mobile eye
tracking data. In this paper we present the results of a user
study gathering naturalistic ground truth data from all these
movements, using wearable eye trackers. We analysed the
movements collected by extracting basic signal features from
them and show that feature analysis is promising to charac-
terise the different types of eye movements. The contribu-
tions of this paper are: 1) the identification of potentially
useful eye movements for pervasive eye tracking and 2) the
characterisation of these eye movements using basic signal
features extracted from the eye movement data.

DATA COLLECTION
Our aim was to analyse eye movement features to provide
a base for a future eye movement detection algorithm for
use in mobile environments. With this in mind, the goal of
the user study was to collect ground truth annotated, natu-
ralistic data using wearable eye-trackers; The difficulty of
this task was to get ground truth data. For this reason, al-
though we were using mobile eye-trackers, the user study
was conducted in a stationary environment with a controlled
stimulus. The stimulus was designed to generate rapid suc-
cessions of eye movements from the user, as expected in an
everyday life environment. Although the study is stationary,
the use of wearable eye-trackers is significant because it in-
fluences both the user and the data. Video based eye-trackers
get in the visual field and portable eye-trackers have a lower
sampling frequency than stationary ones.

Participants
We collected data from 19 participants (13 male, 6 female),
aged 18 to 40 years (mean = 27 years, sd = 6.9 years).

None of the participants wore glasses during the experiment
and three of them wore contact lenses. 11 participants had
brown or dark eye color and eight had green or blue eyes.
Participants were given £10 as a reward.

Apparatus
The experimental system consisted of three devices (see Fig-
ure 1): 1) Electrodes connected to Mobi from Twente Medi-
cal Systems International (TMSI), which was recording Elec-
trooculography (EOG) at 128Hz, 2) the Dikablis infrared eye
tracker from Ergoneers GmbH, which records gaze with a
sampling rate of 25Hz, and 3) a cap with an inertial measure-
ment unit from XSens connected to an XBus master, record-
ing head movements at 50Hz. The signals from these three
devices were sent to a computer running the Context Recog-
nition Network Toolbox (CRNT) [1] to handle synchronisa-
tion and data storage. In addition to these signals, the CRNT
received the ground truth labels from the graphical user in-
terface showing the stimulus to the participants. These labels
correspond to the eye movements the users were supposed
to perform in reaction to the stimulus, including their ampli-
tude and duration.

Both signals were recorded using mobile devices. This im-
plies they have a lower sampling rate than other devices de-
signed for use in a fixed environment, especially considering
the infrared-based video eye trackers. We chose to run the
user study with mobile devices since we aim at designing an
algorithm for use in an everyday environment. Although this
means the lower sampling rates influence the accuracy of the
movements recorded and the quality of the signal, it is still
sufficent for context recognition or eye movement gestures.

Stimulus
The visual stimulus was designed to be fast, to collect out-of-
the-lab-like movements (very short fixations, fast and brief
smooth pursuits, nods and shakes) but still ensure ground
truth. The total duration of the stimulus was 21 minutes,
with seven identical experimental rounds of three minutes
each. The seven rounds ensured that the participants learned
the stimulus and were used to its speed after the second
round. The first two rounds were thus left out during the
data analysis.

Participants were instructed to follow a red point of 0.25◦ of
visual angle presented in front of a light grey background.
Each round consisted of a series of horizontal saccades of
amplitudes 14, 11, 6, 3 and 1◦ of visual angle followed by
a signal to which participants were instructed to nod dur-
ing a two seconds interval after each saccade. The nodding
records vertical VOR. This was followed by a similar se-
ries of vertical saccades that have the same amplitudes as
the horizontal, with a signal to shake the head during two
seconds after each saccade, to record horizontal VOR. Each
saccade was preceeded and followed by a 700ms fixation.
The stimulus continued with horizontal smooth pursuits of
amplitudes 28, 22, 12, 6 and 2◦ of visual angle at 30◦/s,
as this speed has been previously noted as the fastest peo-
ple can follow without having to produce catch-up saccades.
Vertical smooth pursuits of similar amplitude followed, with

16



Time (ms) Time (ms) Time (ms)

G
aze am

plitude (°)

G
aze am

plitude (°)

G
aze am

plitude (°)

-3.97

-4.03

-4.09

-4.15

-1.59

-1.65

-1.71

5.62

5.50

5.38

5.26

460

450

440

430

400

350

500

400

350

450

450

0 20 40 60 80 100 0 400 800 1200 1600 2000 0 400 800 1200E
O

G
 p

ot
en

tia
l (

m
V

)

E
O

G
 p

ot
en

tia
l (

m
V

)

E
O

G
 p

ot
en

tia
l (

m
V

)

Figure 2. Instances of eye movement collected. In blue: EOG signal, in green: gaze from the Dikablis. The graph on the left is a 14◦ horizontal
saccade to the right, the middle one is a VOR from a participant shaking their head and the graph on the right is a 28◦ horizontal smooth pursuit
from left to right. For all three movements, the general shape of the signal is the same independently of the recording method.

a speed of 15◦/s. Each smooth pursuit ended with a 700ms
fixation point at the same location of the end of the smooth
pursuit, to compensate for the gain of the movement. Even-
tually, participants were presented smooth pursuits in circles
of diameter of 14, 11, 8, 5 and 3◦ at 3rad/s.

In addition to providing movements that are as quick as we
would expect from an unconstrained and outdoor environ-
ment, the stimulus also provides us with data to verify the
smallest saccade and smallest smooth pursuit detectable by
the two measurement techniques. This is made in order to
later assess the limits of the future algorithm to be designed
on results from this set of data.

Procedure
Participants were placed 60 cm from a 23” (1680x1050 pix-
els) screen. An array of five EOG electrodes was placed
on their face about 45 minutes before the start of the record-
ing. The two horizontal EOG electrodes were placed on both
temples, the two vertical ones were placed above and below
the left eye (the same eye the Dikablis eye trackers records)
and the reference electrode was placed on the top-center of
the forehead. Each participant had the stimulus explained to
them prior to the experiment. The lighting in the room was
dimmed and participants were instructed to not talk or smile
during the study to minimise artefacts in the recorded EOG
signals. The Dikablis was attached to their head, followed
by the cap with the inertial measurement unit attached on
top. After calibrating the Dikablis, the study began with a
custom 9-point calibration procedure to calibrate the EOG.
This calibration was repeated at the end of the experiment.
After the study, participants were asked to provide feedback
on the comfort of the general setup, the electrodes and the
eye tracker in a questionnaire.

DATA ANALYSIS
The user study provided us with three different sources of
data: The infrared-based eye-tracker, the EOG signals and
head movements. As a first step here we only analyse data
from the EOG signals in order to get an idea of possible
promising features. In the following analysis we also focus
only on the main types of movements that are difficult to

differentiate from one another: saccades, smooth pursuits
and VORs. Blinks and fixations will thus be added to the
feature analysis in future work.

Feature Extraction
Using the recorded labels as ground truth, we isolated each
movement according to its type (saccade, smooth pursuit,
VOR) and relevant characteristic (amplitude, duration, speed).
The goal of this first analysis was to extract several basic fea-
tures from these movements and determine which are key to
discriminate between these movements. The work presented
here is done using 14◦ horizontal saccades (n = 358), 28
and 22◦ horizontal smooth pursuits (n = 752) and all VORs
(n = 1880). These are the most likely movements to show
significant differences since they are the ones with the largest
amplitude.

Figure 2 shows an example of the types of eye movements
that we collected. As expected due to the lower sampling
rate, temporal resolution of the video-based gaze data is lower
compared to EOG. Although the onset and offsets of move-
ments differ by several milliseconds, the overall signal char-
acteristics are similar.

From the different types of movements we extracted a first
set of 15 features (see Table 1).

We chose to extract features concerning range, velocity and
acceleration both from raw EOG data and from EOG data
filtered with a 5-point median filter. In addition to being
easy and quick to extract from online data, these basic fea-
tures also allow us to overview the results filtered data shows
compared to raw data. Velocity and acceleration were esti-
mated as:

v =
d(x)

d(t)
fsγ (1)

v̇ =
d2(x)

d(t)
fsγ (2)

where x is the EOG signal recorded, fs is the sampling fre-
quency (here 128Hz) and γ is the conversion factor between
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Figure 3. These three plots show a selection of features plotted against another. The first one is the slope against the mean velocity of the filtered data;
It shows that the slope alone seems to be enough to determine the saccades, as a clear cluster is formed, and tends to differenciate VORs and smooth
pursuits even though they overlap. The second one is the coefficient a3 in the fitted 4th order polynome against the mean velocity of the filtered data.
Here again the saccades form a distinct cluster, along the feature a3. The third one is the slope against the amplitude of the filtered data. As seen
before the slope separates the saccades but we can also see a double cluster of smooth pursuits, which are the vertical and horizontal smooth pursuits.
They don’t have the same speed but have the same amplitude, which explains the slope difference.

Features
velmean,raw Mean velocity (raw)
velmax,raw Maximum velocity (raw)
accmean,raw Mean acceleration (raw)
accmax,raw Maximum acceleration (raw)
amplraw Range of amplitude (raw)
velmean,fil Mean velocity (filtered)
velmax,fil Maximum velocity (filtered)
accmean,fil Mean acceleration (filtered)
accmax,fil Maximum acceleration (filtered)
amplfil Range of amplitude (filtered)
a1

Coefficients of the
4th order polynome
fitted to the signal

a2
a3
a4
slope Slope of the signal

Table 1. The basic features extracted from each instance of isolated
movements.

degrees and the EOG output. We defined it for each instance
as:

γ =
ampltheoretical
amplmeasured

(3)

with ampltheoretical being the ideal amplitude of the move-
ment (14◦ for saccades, 28 or 22◦ for smooth pursuits) and
amplmeasured being its actual amplitude. Since VORs have
no theoretical amplitude, we took the mean of all conver-
sion rates calculated for the movements of a participant and
used it for the VORs of this participant. Having estimated
velocity and acceleration is sufficient for the purpose of the
feature extraction, which is finding clusters to determine the
movements.

The coefficients a1 to a4 were calculated by fitting the poly-
nome

y = a1x
4 + a2x

3 + a3x
2 + a4x+ a5 (4)

to the data using the least squares procedure. The same
method was applied to extract the slope, by fitting a linear
equation to the data.

Results
The first 2D plots we got from the extracted features show
promising results. Figure 3 shows three of these plots. The
first one is the slope plotted against |velmean,fil|, the mod-
ulus of the filtered signal’s velocity. It shows how the slope
is an interesting feature to characterise saccades, and how
the two features together present a potential to discriminate
VORs and smooth pursuits even though they overlap here.

The second plot has the same |velmean,fil| feature on y-axis,
plotted against the modulus of coefficient |a3| from the 4th

order polynome. This feature again shows how coefficients
from fitted polynomes to the data seems to be an efficient
way to discriminate saccades from the two other movements.
Other coefficients |a1|, |a2| and |a4| showed similar results.

The third plot shows again the slope on x-axis plotted with
|amplfil|, the modulus of the filtered signal’s amplitude. As
seen previously the slope give a good indicator to cluster
saccades, but this plot also shows a double cluster of smooth
pursuits, that was merged in the first plot. This represents
the two groups of smooth pursuits studied in the experiment,
horizontal smooth pursuits at 30◦/s and vertical at 15◦/s. The
different velocities result in different slopes.

Movement classification
We ran a k-nearest neighbour (kNN) classification on these
features as a first attempt to discriminate the movements ac-
cording to a conjunction of features. We chose kNN because
it is lightweight and fast, which are good characteristics for
a future online use. First, we shuffled the data and stan-
dardized it. The data was then separated into five segments
containing each 20% of the saccades, 20% of the smooth
pursuits and 20% of the VORs, in order to achieve a 5-fold
cross-validation.

The kNN classification is sensitive to redundant features, so
we separated the datasets into two subsets that we tested in-
dependently, one being with velocity, acceleration and am-
plitude features from filtered data and the other from raw
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Figure 4. Results for the kNN classification of movements (saccades in
blue, smooth pursuits in red, VORs in green) with unfiltered (circles)
and filtered (stars) data. These results show the features used are suffi-
cient to categorise saccades efficiently. The two other movements need
a better choice of feature to classify them. The plots also show that the
filtering method used gives better results than raw data, and that the
performance doesn’t change much as the number of neighbours varies.

data. We ran the classification with k = 1, 3, 5 and 7. The
precision and recall were calculated for each case, and the
results are presented in Figure 4.

Figure 4 shows that filtered data performs generally better
than raw data both in term of precision and recall. Filtered
data’s results show quite good results, all of them being above
80%. As the number of neighbours k increases, the only
change is the classification of VORs gaining precision and
losing recall.

DISCUSSION
The basic features selected show clusters of movements that
overlap, which is an incentive to extract more features. A
larger set of features should be able to separate the clusters
and categorise movements accurately. With a larger amount
of features, we can run a feature selection algorithm such as
minimum redundancy-maximum relevance (mRMR) prior
to running a classification in order to select the most rele-
vant ones.

The kNN classification we used shows the features we ex-
tracted were enough to categorize saccades efficiently. It
also indicates that more features are needed to classify VORs
and smooth pursuits. Indeed, these will get harder to catego-
rize when we consider a complete dataset, with saccades and
pursuits with a smaller amplitude in addition to fixations and
blinks. Even though the median filter we used showed good
results, future work should include other types of filters as
well as different classification methods.

CONCLUSION
The algorithm to be based on this work will help developing
mobile and pervasive eye tracking applications that need in-
teraction and immediate reaction. In this paper we presented
our work in progress towards an online algorithm to detect
saccades, smooth pursuits, blinks, fixations and VORs. We
described the user study we conducted to collect naturalistic
data, how we isolated each movement and demonstrated that
basic features extraction shows promising results to discrim-
inate three eye movements.

We showed that saccades appear easy to discriminate with
basic features. Smooth pursuits and VORs seem to require
further feature extraction and analysis to characterise them,
although a simple classification already gave good results.
Future work should include: a filtering method comparison,
a larger set of features to analyse and select with a feature
selection algorithm and results from several classification al-
gorithms. It also implies to run the feature extraction on data
collected from the IR-based eye-tracker and the head move-
ment data and extending the analysis to blinks and fixations.
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