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ABSTRACT
Human visual behaviour has significant potential for activity
recognition and computational behaviour analysis, but previ-
ous works focused on supervised methods and recognition of
predefined activity classes based on short-term eye movement
recordings. We propose a fully unsupervised method to dis-
cover users’ everyday activities from their long-term visual
behaviour. Our method combines a bag-of-words representa-
tion of visual behaviour that encodes saccades, fixations, and
blinks with a latent Dirichlet allocation (LDA) topic model.
We further propose different methods to encode saccades for
their use in the topic model. We evaluate our method on a
novel long-term gaze dataset that contains full-day recordings
of natural visual behaviour of 10 participants (more than 80
hours in total). We also provide annotations for eight sam-
ple activity classes (outdoor, social interaction, focused work,
travel, reading, computer work, watching media, eating) and
periods with no specific activity. We show the ability of our
method to discover these activities with performance compet-
itive with that of previously published supervised methods.
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INTRODUCTION
Practically everything that we do in our lives involves our
eyes, and the way we move our eyes is closely linked to our
goals, tasks, and intentions. These links make the eyes a par-
ticularly rich source of information about the user as demon-
strated by the increasing number of works that use eye move-
ments and closely related measures, such as pupil diameter or
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Figure 1: Our method takes long-term visual behaviour data (up to ten
hours) as input and discovers everyday human activities, such as eating,
reading, or being on travel, without supervision.

blink rate, for context recognition. For example, eye move-
ment analysis has been used to recognise everyday activities,
such as in the office [7] or reading in transit [5, 21]. Moreover,
the close link between eye movement and cognition promises
automatic analysis of covert aspects of user state that are diffi-
cult if not impossible to assess using existing sensing modali-
ties, such as language expertise [25], visual memory recall [4],
perceptual curiosity [18] or cognitive load [27, 37, 9].

Despite these advances, previous works focused on short-
term visual behaviour and supervised methods to recognise
predefined activity classes. The availability of robust and af-
fordable mobile head-mounted eye trackers points the way to
a new class of context-aware systems that can discover activ-
ities from characteristic eye movement patterns, i.e. without
any supervision. Unsupervised discovery of activities from
eye movements has the potential to enable a range of novel ap-
plications, such as eye-based life logging [20], mental health
monitoring [38], or the quantified self [26]. The problem set-
ting for these applications is that of post-hoc analysis of hu-
man visual behaviour. In that setting, a full-day recording of a
person’s visual behaviour is available at the time of analysis.
The goal of the analysis is to discover characteristic visual
behaviours that can then be associated to a set of desired tar-
get activity classes. These characteristic behaviours occur at
arbitrary points in time and with varying durations through-
out the day. Such analysis problems commonly arise in the
aforementioned application domains.
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Figure 2: Input to our method consists of eye movements detected in the eye video. These movements are first encoded into a string sequence from
which a bag-of-words representation is generated. The representation is used to learn a latent Dirichlet allocation (LDA) topic model. Output of the
model is the set of topic activations that can be associated with different activities.

So far, however, it remains unclear how much information
about daily routines is contained in long-term human visual
behaviour, how this information can be extracted, encoded,
and modelled efficiently, and how it can be used for unsuper-
vised discovery of human activities. The goal of this work
is to shed some light on these questions. We collected a
new long-term gaze dataset that contains natural visual be-
haviour of 10 participants (more than 80 hours in total). The
data was collected with a state-of-the-art head-mounted eye
tracker that participants wore continuously for a full day of
their normal life. We annotated the dataset with eight sam-
ple activity classes (outdoor, social interaction, focused work,
travel, reading, computer work, watching media, and eating)
and periods with no specific activity (see Figure 1). The
dataset and annotations are publicly available online. We fur-
ther present an approach for unsupervised activity discovery
that combines a bag-of-words visual behaviour representation
with a latent Dirichlet allocation (LDA) topic model (see Fig-
ure 2). In contrast to previous works, our method is fully
unsupervised, i.e. does not require manual annotation of vi-
sual behaviour. It also does not only extract information from
saccade sequences but learns a more holistic model of visual
behaviour from saccades, fixations, and blinks.

The specific contributions of this work are three-fold. First,
we present a novel ground truth annotated long-term gaze
dataset of natural human visual behaviour continuously
recorded using a head-mounted video-based eye tracker in the
daily life of 10 participants. Second, we propose an unsuper-
vised method for eye-based discovery of everyday activities
that combines a bag-of-words visual behaviour representation
with a topic model. To this end we also propose different ap-
proaches to efficiently encode saccades, fixations, and blinks
for topic modelling. Third, we present an extensive perfor-
mance evaluation that shows the ability of our method to dis-
cover daily activities with performance competitive with that
of previously published supervised methods for selected ac-
tivities.

RELATED WORK
Our method builds on previous works on eye movement anal-
ysis, eye-based activity and context recognition, as well as
discovery of human activities using topic models.

Eye Movement Analysis
Eye movement analysis has a long history as a tool in experi-
mental psychology and human vision research to better under-
stand visual behaviour and perception. Despite its widespread

use, previous works typically analysed a small set of well-
known eye movement features, most notably fixation dura-
tion or fixation patterns. In an early work, Salvucci et al. de-
scribed three methods based on sequence-matching and hid-
den Markov models for automated analysis of fixation pat-
terns [30]. Later works used fixation analysis, for example,
to identify image features that affect the perception of visual
realism [13], to train novice doctors in assessing tomography
images [12], or to study differences in face recognition [10].
Blink rate was shown to correlate with fatigue [32]. The anal-
ysis of the high-frequent fluctuations in pupil diameter has
emerged as a robust and well-tested measure of cognitive ac-
tivity, such as high cognitive load [27, 29]. All of these works
demonstrated the significant influence of specific tasks on hu-
man visual behaviour, but they did not aim to analyse said
behaviour to recognise the task at hand.

Eye-based Activity Recognition
Eye-based activity recognition was first explored in a series
of studies by Bulling et al. They proposed a set of eye move-
ment features, including repetitive saccade patterns, as well as
a supervised method to recognise human activities from eye
movements, such as reading in transit [5], office activities [7]
or cognitive processes, such as visual memory recall pro-
cesses [4]. A similar approach was later used by Tessendorf
et al. to recognise cognitive load for context-aware hearing
instruments [37], as well as by Kunze et al., who showed that
different document types could be recognised from visual be-
haviour [24]. Ishimaru et al. used eye blink frequency and
head motion patterns to recognise activities, such as reading
or watching TV [21]. In human-computer interaction, recent
works used specific eye movement features to recognise users’
tasks, such as task transitions as well as perceptual and cog-
nitive load [9], or cognitive abilities, such as visual working
memory and perceptual speed [35]. More closely related to
our work, Bulling et al. described an approach to recognise
four high-level contextual cues, such as interacting with some-
body vs. no interaction, from long-term visual behaviour [8].
However, their dataset was considerably smaller and, most
importantly, their method was fully supervised.

Activity Discovery Using Topic Models
Topic models have been widely used to discover human activ-
ities from video (see [28] for an example) but less often from
ambient and on-body sensors (see [33] for a recent analysis
of different unsupervised activity discovery approaches). In
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Figure 3: Encoding of large (a) and small (b) saccades according to their
direction and amplitude. Example of a resulting encoding of three con-
secutive saccades for the 1-gram, 2-gram, and 3-gram approach (c). Blue
dots indicate individual gaze samples belonging to four fixations.

an early work, Begole et al. analysed daily rhythms of com-
puter use by clustering patterns of computer and email activ-
ity [2]. Barger et al. used mixture models to discover human
behaviour patterns from statistics of sensor events in a smart
home [1]. Gu et al. proposed an unsupervised approach for
activity recognition based on fingerprints of object use [15].
They developed a wearable RFID system for object use de-
tection and conducted a real-world data collection with seven
participants in a smart home over two weeks. Farrahi et al.
used topic models to infer daily routines from mobile phone
data [14] while Huynh et al. discovered daily routines from
accelerometer recordings of a single user [19]. We are not
aware of any previous work that used topic models to discover
activities from human visual behaviour.

ACTIVITY DISCOVERY FROM VISUAL BEHAVIOUR
We propose a method for unsupervised discovery of every-
day human activities (see Figure 2 for an overview). Our
method combines a bag-of-words visual behaviour represen-
tation with a latent Dirichlet allocation (LDA) topic model.
Our model uses the full range of eye movements available in
current head-mounted eye trackers, namely blinks, fixations
(static states of the eyes), and saccades (fast simultaneous
movements of both eyes to position gaze at a new location).

Eye Movement Detection
Eye movements are detected from the pupil positions pro-
vided by the eye tracker software in each eye video frame.
We first identify overexposed frames and wrongly detected
pupils. Specifically, we discard frames with an average grey
value larger than 225, a pupil detection confidence value be-
low 85%, or a pupil diameter smaller than 40 pixels. We

Figure 4: Sample multi-hierarchy encoding of a particular saccade direc-
tion (blue dot). The saccade is encoded across three granularity levels of
the discretised saccade direction space.
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Figure 5: Sample k-means clustering of saccades based on their direc-
tion and amplitude for k = 24 of P6. Each cluster centroid is encoded
with a distinct character.

found these values to work robustly in previous recordings
in mobile settings with the same eye tracker.

We then detect three fundamental eye movements from
the pupil positions, namely blinks, fixations, and saccades.
Blinks can take place at any time and are characterised by
closed eye lids. Consequently, to detect blinks, we take
frames in which no pupil was detected as blink candidates.
Failed pupil detections can also be caused by motion blur, e.g.
during a saccade. To discriminate blinks and saccades we ap-
ply a velocity threshold of 150 pixels/sec on pupil positions.
The velocity is calculated as the difference in pupil position
before and after a particular blink candidate divided by the
blink duration. We detect fixations using a dispersion-based
algorithm [31]. Frames are assumed to belong to a fixation if
the dispersion of the corresponding pupil positions is within a
maximum radius of 7.5 pixels, which we determined empiri-
cally. In addition, a fixation had to last at least for 200ms [17].

Eye Movement Encoding
We propose four different approaches for encoding saccades
into a sequence of characters. In the 1-gram approach we con-



Figure 6: Fixation duration is binned into a person-specific histogram
and each bin is encoded with a distinct character. The number of blinks
is directly encoded in the character sequence.

sider individual saccades that we encode according to their
direction and amplitude. Similar to [7], the n-gram approach
generalises the 1-gram approach by considering n consecu-
tive 1-gram encodings, thereby retaining information about
pre- and succeeding saccades (see Figure 3). In the multi-
level approach we discretise the saccade direction space with
three granularity levels and encode saccades across these lev-
els (see Figure 4). For the fourth approach we use k-means to
cluster saccades into k clusters based on their direction and
amplitude and encode each cluster centroid individually (see
Figure 5). This approach is data-driven and only requires
a single parameter, the number of clusters k, instead of pre-
defined thresholds for saccade amplitudes and directions.

We further encode fixation duration and blink rate (see Fig-
ure 6). Fixation duration is a well-established measure in
experimental psychology and commonly used for studies on
visual perception and cognition [22]. We encode fixation du-
ration by first finding the person-specific minimum and max-
imum durations and then splitting this range into 10 equally-
sized bins. Each bin, and consequently all fixation durations
that fall into that bin, is then encoded with a distinct charac-
ter. The number of blinks during a fixation we directly en-
code in the string sequence. Finally, we encode the combined
character sequence – that still contains temporal information –
into a bag-of-words representation by generating histograms
of word occurrence counts (see Figure 5).

Topic Modelling
The bag-of-words visual behaviour representation serves as
input to an LDA topic model [3]. We opted for an LDA model
given that it recently proved most robust among popular topic
models [33]. Topic models were originally proposed in the
text processing community [16] but subsequently became in-
fluential also in other domains, most notably computer vi-
sion [11] and human activity recognition [19]. As introduced
by Blei et al. [3], topic models regard a corpus of text docu-
ments as a collection of words belonging to different topics,
the so-called bag-of-words (BoW) representation. Topic mod-
els learn probability distributions of words belonging to these
topics but, more importantly, also make it possible to infer the
underlying topics from a corpus of documents.

Expressed mathematically, a document is defined as a collec-
tion of N words denoted by w = (w1, w2, ..., wn), where wn

is the nth word in the document. The document corpus C
contains M documents denoted by C = {w1, w2, ..., wM}.
In addition to the document corpus, the number of topics

K and the Dirichlet prior p(θd|α) with parameter α on the
topic-document distributions p(t|θd) have to be determined
to derive θ, which describes the topic-document distribution.
By defining the number of topics, the dimensionality of the
topic variable t is assumed to be known and fixed. The word
probabilities are parametrised by a K × V matrix β, where
βij = p(wj = 1|ti = 1). To calculate the probability of a
corpus p(C|α, β ), the parameters α for the Dirichlet distribu-
tion and parameter β for the word distribution p(w|t, β) have
to be found to maximise the likelihood L over all documents
d = 1, ...,M . The formula is given by

p(C|α, β) = L(α, β) =

M∏
d=1

∫
p(θd|α)

(
Nd∏
n=1

K∑
t=1

p(wd
n|tdn, β)p(tdn|θd)

)
θd, (1)

where each document consists of the words wd
n with n =

1, ..., Nd. With α and β, θ can be derived and the corpus C
can be decomposed into the following form:

C = φ · θ (2)

DATA COLLECTION
In this representation the word-topic distribution φ and the
topic-document distribution θ are key to discovering activ-
ities. Following the same terminology as [3], we propose
to encode eye movement characteristics as words and to re-
gard long-term visual behaviour as a corpus of text documents
composed of these words, from which activities (topics) are
automatically inferred. Consequently, we split the encoded
visual behaviour sequence into a corpus of documents using
a sliding window with a window size of five minutes and
a stepsize of 30 seconds. These values were, again, deter-
mined empirically. We then run the LDA topic model with
K = 4, 6, 8, 10 topics using a Dirichlet prior α of 50/K, as
recommended by Griffths and Steyvers [36]. The topic model
generates two outputs: 1) the word-topic distribution φ that
describes the visual behaviour for a specific topic or, as in our
our case, during a specific activity, and 2) the topic-document
distribution θ that indicates if and when a topic is active in a
particular document. These topic activations are then associ-
ated with the different ground truth activities.

Figure 7 shows sample saccade direction distributions for
“reading” and “watching media” as well as the corresponding
word-topic distributions. The corresponding topic-document
distributions are shown in Figure 8b while Figure 8a shows
the topic activations. The active topics can then be compared
to the annotated ground truth activities (see Figure 8c). In this
example, topic 2 seems to represent “reading” while topic 3
matches best with “watching media”.

To the best of our knowledge, the only long-term dataset of
human visual behaviour recorded in daily life so far is the
one presented in [8]. However, that dataset is not publicly
available and, as mentioned before, it only contains relative
eye movements of four participants recorded using a wear-
able electrooculography device. We therefore collected our
own long-term visual behaviour dataset using a state-of-the-
art head-mounted video-based eye tracker.
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Figure 7: Sample saccade direction distributions for “reading” and “watching media” (top), as well as the corresponding 24-means saccade encoding
and (middle) and word-topic distributions (bottom) for P6.

Apparatus
The recording system consisted of a Lenovo Thinkpad X220
laptop, an additional 1TB hard drive and battery pack, as
well as an external USB hub. Gaze data was collected using
a PUPIL head-mounted eye tracker connected to the laptop
via USB [23] (see Figure 9). The eye tracker features two
cameras: one eye camera with a resolution of 640×360 pix-
els recording a video of the right eye from close proximity,
as well as an egocentric (scene) camera with a resolution of
1280×720 pixels. Both cameras record at 30 Hz. The battery
lifetime of the system was four hours. We implemented cus-
tom recording software with a particular focus on ease of use
as well as the ability to easily restart a recording if needed.

Procedure
We recruited 10 participants (three female) aged between 17
and 25 years through university mailing lists and adverts in
university buildings. Most participants were bachelor’s and
master’s students in computer science and chemistry. None
of them had previous experience with eye tracking. After ar-
riving in the lab, participants were first introduced to the pur-
pose and goals of the study and could familiarise themselves
with the recording system. In particular, we showed them how

to start and stop the recording software, how to run the cali-
bration procedure, and how to restart the recording. We then
asked them to take the system home and wear it continuously
for a full day from morning to evening. We asked participants
to plug in and recharge the laptop during prolonged stationary
activities, such as at their work desk. We did not impose any
other restrictions on these recordings, such as which day of
the week to record or which activities to perform, etc.

Ground Truth Annotation
For evaluation purposes, the full dataset was annotated post-
hoc from the scene videos by a paid human annotator with
a set of nine non-mutually-exclusive ground truth activity la-
bels (see Table 1 and Figure 8c). Specifically, we included
labels for whether the participant was inside or outside (out-
door), took part in social interaction, did focused work, trav-
elled (such as by walking or driving), read, worked on the
computer, watched media (such as a movie) or ate. We fur-
ther included a label for special events, such as tying shoes or
packing a backpack. This selection of labels was inspired by
previous works and includes a subset of activities from [8, 7,
34].
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Figure 8: Result of the topic modeling approach applied with eight topics
on the 24-means encoding and the ground truth annotation of P6.

Dataset
We were able to record a dataset of more than 80 hours of
eye tracking data (see Table 1 for an overview and Figure 10
for sample images). The dataset comprises 7.8 hours of out-
door activities, 14.3 hours of social interaction, 31.3 hours
of focused work, 8.3 hours of travel, 39.5 hours of reading,
28.7 hours of computer work, 18.3 hours of watching media,
7 hours of eating, and 11.4 hours of other (special) activities.
Note that annotations are not mutually exclusive, i.e. these
durations should be seen independently and sum up to more
than the actual dataset size.

Most of our participants were students and wore the eye
tracker through one day of their normal university life. This
is reflected in the overall predominant activities, namely fo-
cused work, reading, and computer work. Otherwise, as can
also be seen from the table, our dataset contains significant
variability with respect to participants’ daily routines and con-
sequently the number, type, and distribution of activities that
they performed. For example, while P1 wore the eye tracker
during a normal working day at the university, P7 and P9
recorded at a weekend and stayed at home all day mainly read-
ing and working on the computer (P7) or watching movies
(P9) with little or no social interactions.

RESULTS
Huynh et al. used topic models to discover daily routines that
consisted of re-occurring activities of a single person over sev-
eral days [19]. Although participants’ activities varied across
days, their overall daily routines were still rather similar. In
contrast, we deal with full-day recordings of multiple partici-

(a) (b)

Figure 9: Recording setup consisting of a laptop with an additional ex-
ternal hard drive and battery pack, as well as a PUPIL head-mounted
eye tracker (a). Recording hardware worn by a participant (b).

pants and a large variability with respect to the number, type,
and distribution of activities that they performed, as well as
their visual behaviour. In consequence, the best-performing
model – specifically the best-performing saccade encoding,
eye movement characteristics, as well as topic model param-
eters – is highly person-specific. We therefore opted to first
show the best performance for each participant irrespective
of the particular parameters used. In subsequent analyses we
then focus on one representative participant to show the influ-
ence of different parameters on performance. In all analyses
that follow, performance was calculated using the F1 score
F1 = 2 ∗ precision∗recall

precision+recall , which is the harmonic mean of
precision TP

TP+FP and recall TP
TP+FN , where TP, FP, and FN

represent frame-based true positive, false positive, and false
negative counts, respectively.

Performance for Each Participant
We first calculated the performance for each participant while
optimising all free parameters of our method, i.e. saccade en-
coding, eye movement characteristics, as well as the number
of topics in the topic model. Figure 11 shows the top mean
F1 score for each participant with error bars visualising the
range of performances for the particular subset of activities
performed by the participant. As can be seen from the fig-
ure, our method achieves robust performance for discovering
everyday activities across all participants independent of the
particular type and distribution of activities. However, the
figure also shows the considerable variability in performance
for individual activities depending on the duration with which
these activities were performed (cf. Table 1). For example,
the minimum F1 score was achieved for P1 for watching me-
dia (8.34%) and P7 for social interaction (7.58%). As can be
seen from Table 1, in both cases the respective activity was
performed over considerably shorter durations than all other
activities. The top F1 scores were achieved by P2 (93.83%)



Activity Class Description P1 (m) P2 (m) P3 (f) P4 (m) P5 (m) P6 (m) P7 (m) P8 (f) P9 (m) P10 (f) Total
outdoor Person is outside 134 48 6 27 6 62 0 33 0 150 466
social interaction Person is interacting with somebody else 173 69 127 77 81 95 5 59 0 169 855
focused work Person is doing focused work 313 34 114 170 221 221 275 214 72 243 1877
travel Person is travelling, e.g. walking or driving 156 70 40 47 33 47 18 32 23 30 496
reading Person is reading 347 39 182 278 282 266 350 288 83 256 2371
computer work Person is working on the computer 189 30 135 267 277 263 327 121 81 30 1720
watching media Person is watching media 9 280 115 114 46 37 90 36 308 62 1097
eating Person is eating 44 43 49 34 34 32 55 47 28 56 422
special Special events, e.g. tying shoes 49 45 97 32 95 124 52 67 79 45 685

Table 1: Overview of the dataset showing the amount of ground truth annotated data for each activity class and participant in minutes. Participants’
gender is given in brackets (f: female, m: male). Note that annotations are non-mutually exclusive, i.e. they sum up to more than the actual dataset size.

(a) outdoor (b) social interaction (c) focused work (d) travel (e) reading

(f) computer work (g) watching media (h) eating (i) special: packing
backpack

(j) special: checking
mobile phone

Figure 10: Sample scene images for each activity class annotated in our dataset showing the considerable variability in terms of place and time of
recording. The red dot indicates the gaze location in that particular image.

and P9 (91.33%) for watching media. These were also the
activities performed the most among all activities.

Performance Across Participants
We then studied performance across all participants. As be-
fore, we optimised all free parameters of our method and
calculated the mean, minimum, and maximum F1 scores for
each activity. Figure 12 shows the top mean F1 score aver-
aged over all participants performing the activity with error
bars visualising the range of individual performances. The
best performance was achieved for reading (74.75%), focused
work (70.01%), and computer work (64.18%), while all other
activities could be discovered with a mean F1 score of around
50%. These findings are in line with results reported in previ-
ous works that showed that reading and focused work could
be recognised well using supervised learning methods [6, 37].
Table 1 further shows that the good performance correlates
with the duration with which these three activities were per-
formed, i.e. the more data is available, the better the activity
can be discovered by our LDA topic model.

Impact of Different Saccade Encodings
We then evaluated the different saccade encodings because
of their fundamental importance for our activity discovery
method. For each encoding (1-gram, n-gram, multi-hierarchy,
and k-means) we calculated the best average performance

across activities and participants using all eye movement char-
acteristics. We also swept the the number of topics K =
4, 6, 8, 10 in our topic model. Although not shown here, the
k-means encoding with k = 24 andK = 10 topics performed
best overall. Thus, we decided to use k-means encoding with
k = 24 in all following evaluations.

As mentioned before, both the activities that participants per-
formed and their visual behaviour was highly person-specific.
Evaluating all parameters for all participants was therefore
deemed infeasible. To select one representative participant,
we calculated histograms over the activity durations for each
participant as well as the total, and calculated the binary dis-
tances between these using the χ2 distance metric. Based on
these distance comparisons, we selected P6 for further investi-
gation, as his activity distribution most closely resembled the
distribution of the full dataset.

Impact of Eye Movement Characteristics
We were further interested in the impact of different eye
movement characteristics on performance for individual ac-
tivities. Figure 13 provides an overview of the performance
for P6 for different eye movement characteristics using the
24-means saccade encoding for each activity. The figure
shows that the best-performing eye movement characteris-
tic is indeed activity-specific. For this specific participant,
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Figure 11: Top mean F1 scores for each participant with error bars vi-
sualising the range of performances for the particular set of activities
performed by the participant irrespective of the particular saccade en-
coding, eye movement characteristics, or topic model parameters used.

only using information about saccades achieved the best per-
formance for four out of the nine activity classes, namely
outdoor (45.7%), social interaction (53.6%), eating (41.5%),
and special (56.9%). Additional information on fixation du-
ration achieved the best performance only for focused work
(73.7%) while adding information on blinks achieved best per-
formance for travel (35.9%) and watching media (33.4%). Fi-
nally, using information about all three eye movement char-
acteristics achieved best performance for reading (73.2%) as
well as computer work (69.9%).

Impact of Number of Topics
The previous evaluation showed that additional eye move-
ment characteristics can improve performance for particular
activities. We further analysed the impact of different number
of topics K = 4, 6, 8, 10 on performance. Figure 14 shows
a performance comparison for different numbers of topics for
the 24-means saccade encoding with blinks for P6. The fig-
ure shows that, similar to the different eye movement features,
the number of topics affects individual activities differently.
These performance differences are also linked to the duration
of the activities performed by the participant (cf. Table 1).
Generally speaking, the lower the number of topics the better
the dominating activities – focused work, reading, computer
work, and special – can be discovered from visual behaviour.
The higher the number of topics, the more activities can be
discovered, but with decreased F1 scores. This can be seen in
Figure 14 where the F1 scores are generally higher for eight
topics than for ten topics. If there are many activities, the
smaller the number of topics, the worse the results given that
one topic will encode multiple activities.

Comparison with Supervised Methods
Supervised methods have previously been used to recognise
reading and different office activities from eye movement [7,
5]. We were therefore finally interested in comparing the per-
formance achieved for discovering reading, computer work,
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Figure 12: Top mean F1 score for each activity across all participants
with error bars visualising the range of performances results for the par-
ticipants performing the corresponding activity irrespective of the par-
ticular saccade encoding, eye movement characteristics, or topic model
parameters used.
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Figure 13: Performance comparison for different eye movement charac-
teristics for the 24-means saccade encoding with 10 topics for P6.

and watching media with our unsupervised method with those
used in prior work (see Figures 15-17). As shown in Fig-
ure 15 we were able to recognise reading with a top F1 score
of 74.75% compared to the F1 score of about 70% achieved
using a linear support vector machine as reported in [7]. For
computer work we achieved a maximum mean F1 score of
64.18%, which is a bit lower than the 70% for browsing re-
ported in [7]. For watching media we achieved a maximum
mean F1 score of only 52.77%, while the corresponding per-
formance for recognising watching video in [7] was about
83%. It is important to note, however, that performance for
discovering computer work and watching media is reduced
because not every participant performed these activities for
a sufficient amount of time. For individual participants we
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Figure 14: Performance comparison for different number of topics for
the 24-means saccade encoding with blinks for P6.

were able to achieve a maximum performance of over 90%
F1 score for watching media.

To establish baseline performance results and directly com-
pare the different methods on our new dataset, we reimple-
mented the string matching algorithm for reading recognition
as described in [5]. We also trained our own linear support
vector machines and naı̈ve Bayes classifiers for binary activ-
ity classification, the former of which was used in [7]. In a
nutshell, the string matching algorithm moves a predefined
reading template “Rlll” over the encoded 1-gram saccade se-
quence. Intuitively, the template describes the characteristic
sequence of small saccades to the left while scanning a line
of text, followed by the large “carriage return” saccade to the
right to jump to the beginning of the next line. To detect read-
ing, the algorithm calculates the Levensthein distance and ap-
plies a distance threshold of Ted = 3 in each step of moving
the template over the sequence and finally performs majority
voting in a window of string length Wstr = 30. As can be
seen from Figure 15, our LDA topic model outperforms the
string matching approach for all participants.

For the SVM algorithm we fixed the two main parameters,
the cost C and the tolerance of termination criterion ε, to C
= 1 and ε = 0.001. Every feature vector consists of 56 of
the 62 features described in [7] and was computed for a time
window Wfe = 120s and a step size Sfe = 1s. Table 2 pro-
vides an overview of this comparison for P6. As can be seen
from the table, our method shows competitive performance
to the SVM in terms of F1 score, accuracy and correlation
and even outperforms SVM in terms of recall. Both always
outperforms the naı̈ve Bayes classifier.

DISCUSSION
Referring to the open questions from the introduction, results
on our new 10-participant dataset demonstrate that long-term
human visual behaviour does indeed contain a significant
amount of information about our daily routines. We demon-
strated that this information can be extracted from key eye
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Figure 16: Performance comparison for “computer work” for each par-
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Precision Recall F1 Score Accuracy Correlation

Activity Class LDA SVM NB LDA SVM NB LDA SVM NB LDA SVM NB LDA SVM NB

outdoor 38.0 68.7 29.6 100.0 85.0 69.9 55.0 76.0 41.6 81.2 94.4 89.3 0.55 0.73 0.41
social interaction 43.4 75.2 18.1 80.8 30.7 57.9 56.5 43.6 27.6 76.9 62.2 81.5 0.46 0.27 0.25
focused work 74.9 81.8 97.5 84.5 78.3 58.8 79.4 80.0 73.4 79.3 81.3 67.5 0.59 0.62 0.46
travel 23.7 69.7 93.5 73.3 23.3 11.0 35.9 35.0 19.7 78.9 78.9 38.0 0.33 0.31 0.16
reading 82.4 80.8 96.4 82.3 86.5 67.3 82.3 83.6 79.3 79.8 82.4 72.2 0.58 0.65 0.47
computer work 86.2 87.9 95.8 83.1 83.0 64.7 84.6 85.4 77.2 83.3 83.6 69.2 0.66 0.67 0.42
watching media 27.0 20.0 93.7 59.3 79.2 8.8 37.1 32.0 16.1 82.8 93.9 30.4 0.32 0.38 0.12
eating 38.3 60.8 97.2 86.1 68.7 18.0 53.0 64.5 30.4 89.4 95.6 70.6 0.53 0.62 0.34
special 41.4 57.4 96.1 92.5 79.8 28.6 57.2 66.8 44.1 66.6 86.0 40.2 0.44 0.59 0.21

Average 50.6 66.9 79.8 82.4 68.3 42.8 60.1 63.0 45.5 79.8 84.3 62.1 0.50 0.54 0.3

Table 2: Performance comparison for the LDA topic model, a support vector machine (SVM), and a naı̈ve Bayes (NB) classifier in terms of precision,
recall, F1 score, accuracy, and Matthews correlation coefficient for P6.

movements that can be readily tracked with head-mounted
eye trackers, namely saccades, fixations, and blinks. We fur-
ther proposed and evaluated different methods to efficiently
encode the extracted information into a joint bag-of-words
representation. Building on this representation, we intro-
duced LDA topic models as a versatile method to model a
wide variety of human visual behaviours. We demonstrated
the suitability of this whole approach for unsupervised dis-
covery of everyday activities. Specifically, we are able to
recognise reading with a top average performance of 74.75%,
which is competitive with results reported in previous works
using fully supervised methods [5].

Our evaluations also revealed that the best combination of
methods and parameters – and consequently the performance
– depend considerably on the particular user and his specific
visual behaviour as well as the type, number, and distribution
of activities that he performed throughout the day. Conse-
quently, to achieve good performance, both the specific eye
movement characteristics as well as the number of topics (ac-
tivities) modelled in the topic model have to be optimised to
the particular set of activities relevant for a particular appli-
cation. While this may seem a severe limitation, supervised
methods pose even stricter requirements, as the set of activity
classes recognised by the system has to be defined and trained
up front. In contrast, the proposed method can deal with an
arbitrary number of activity classes as long as the target activ-
ities are performed sufficiently long relative to all other activ-
ities. This requirement directly stems from the fact that topic
models rely on word-topic and topic-document distributions
and require sufficient statistics about individual topics.

CONCLUSION
In this work we proposed a new dataset as well as a fully un-
supervised approach to discover human activities from long-
term visual behaviour. Our approach efficiently encodes
the full range of eye movements available in current head-
mounted eye trackers, namely blinks, saccades, and fixations.
Our results show the significant information content available
in human visual behaviour for unsupervised discovery of ac-
tivities, opening up new venues for research on eye-based be-
havioural monitoring and life logging.
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