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Abstract. In scenarios where direct access to displayed content, such as 
secured web pages or confidential documents, is restricted, eye-tracking 
data can serve as a side channel for information inference. Represented 
as human attention maps, eye tracking data is widely used in research, 
for example, to quantify how users explore visual information. In this 
work, we specifically focus on visual question-answering (VQA) scenar-
ios to demonstrate, for the first time, that a rich amount of information 
can be leaked solely from human attention maps. Hence, we assume that 
an adversary only has access to the gaze attention maps and aims to 
derive a range of attributes about the image (e.g. the chart type), the 
question (e.g. question type), and the answe r (e.g. the accuracy-based 
complexity). This information leakage could be the first step towards 
potentially more complex insights about human perception and cogni-
tion. Our experiments demonstrate that deriving attributes is feasible, 
and simultaneously predicting multiple attributes improves the success 
rate for attributes that are difficult to infer. This paper highlights poten-
tial threats, encouraging the community to address these concerns and
develop appropriate privacy-preserving solutions.

Keywords: VQA · Side-Channel Attack · Multitask Learning · 
Transformer · Priv acy

1 Introduction 

Attention maps – 2D maps that encode human gaze data – have become an indis-
pensable tool in eye-tracking research, particularly in understanding how users 
engage with information visualisations within documents [3, 17, 26]. By identify-
ing and highlighting areas of visualisation that attract attention, gaze attention 
maps help researchers and designers determine what asp ects of visual content are 
most salient to the human visual system [38, 47]. Particularly in visual question-
answering scenarios, gaze attention maps bridge the gap between pe rception and
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cognition by showing how visual attention is distributed in response to a ques-
tion, thus revealing insights into how individuals prioritize visual i nformation, 
manage cognitive load, and integrate perceptual features to infer answers [43, 50]. 

Fig. 1. Human attention maps can unintentionally reveal sensitive information in visual 
question-answering (VQA) scenarios where users’ gaze patterns are collected and aggre-
gated, and then attention maps are publicly shared. We demonstrate, for the first time, 
that adv ersaries with access only to gaze attention maps can infer various attributes 
related to the chart, the question, and the answer.

Even when the content or stimuli presented to a user, such as a secured 
webpage or protected document, cannot be directly accessed by an attacker, 
eye-track ing data can serve as a side-channel to infer what the user is viewing
[46, 48]. This, therefore, raises significant p rivacy c oncerns:

First, the visualisation image can be privacy-sensitive in several scenarios, 
particularly when they involve personal, confidential, or sensitive data [55, 57]. 
For example (c.f. Fig. 1), a dashboard visualising patient health records, such 
as medical histories, diagnoses, or medication usage, can reveal sensitive health 
information, or a graph visualising income distribution or spending patterns in 
a community could expose individuals’ financial data, including salaries, debts, 
or investment information. The visualisation image can also reveal information 
about the users’ visual perception, which forms the foundation of further cog-
nitive processing since human attention is not only naturally drawn to visually 
salient parts of an image but can also be modulated by the task at hand, where 
the question guides the focus to specific parts of the image that are relevant for
answering [43, 50]. 

Second, the question asked to the users is subsequently crucial and poten-
tially privacy-sensitive since it can reveal i nformation about the visualisations, 
such as the topic or some visual references [31]. Additionally, it acts as a cogni-
tive guide, shaping where a person looks (or should look) in the image [36]. This 
is an example of top-down attention, where higher cognitive functions (the ques-
tion) influence visual perception [53]. In addition, the question helps filter out 
unnecessary information by narrowing the search space within the image [16]. 
The cognitive system uses the question to determine which visual features and 
regions are worth attending to. Human cognition integrates multiple aspects of 
the visual scene (e.g., colours, shapes, sizes, and spatial relationships) to extract
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meaningful information that answers the question. This integration relies on 
working memory and executive function, which keep track of relevan t visual 
elements while the question is being processed cognitively [43]. Therefore, infor-
mation about the question can leak information about the user’s perceptual and 
cognitive processes.

Third, the answer can also raise privacy concerns since it might reveal infor-
mation about the users’ prior knowledge, memory recall, and s emantic under-
standing [32, 43]. Moreover, the complexity of the question can increase cognitive 
load, affecting both the processing time and accuracy of the answer [50]. 

Overall, VQA serves as an effective domain for handling multiple modalities, 
particularly images (visual representations) and text (questions and answ ers), 
relying on various human cognitive a nd perceptual factors.

In this paper, we aim to shed light on the amount of information that could be 
inferred from gaze attention m aps solely, beyond the simple gaze l ocation estima-
tion [46, 48]. More technically, we present AttentionLeak – an adversarial attack 
that only leverages the gaze attention maps to derive privacy-sensitive informa-
tion in the form of a range of attributes about the image (e.g. the chart type), 
the question (e.g. question type), and the answer (e.g. the answer complexity). 
This could act as the first step towards potentially more complex insigh ts about
human perception and cognition1. In summary, our paper makes the following 
cont ributions:

– Our work is the first to demonstrate the potential of gaining information from 
gaze attention maps alone.

– We show that we can glean insights about the image, question, and answer 
solely from the gaze attention maps i n VQA scenarios.

– Through extensive expe riments 2, we demonstrate that an adversary, even 
with limited resources in terms of data and c omputing power, can successfully 
perform the attack.

– We further recommend the most suitable model architectures, optimizers, 
and augmentation techniques for our attack a ccording to the characteristics 
of atten tion maps.

2 Related Work 

In this section, we introduce the key related work on how an adversary can 
derive private information through inference attacks, what this information can 
reveal about the users and the corresponding information visualisation, and why
privacy-preserving techniques are, therefore, crucial.

1 Note that even if the data is aggregated (the common practice in gaze attention maps
[50]), patterns could still re-identify individuals [23, 34], leaking further information. 
However, this remains out of the scope of this p aper.

2 The implementation code will be publicly available upon a cceptance.
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2.1 How Can an Adversary Infer P rivate Information? 

Inference attacks are privacy-violating strategies that aim to extract sensitive 
or private information from seemingly benign or aggregated data. They have 
become an increasingly important area of research as the reliance on data shar-
ing and machine learning systems grows. The pioneering work of Denning et
al. [11] on statistical database security showed that adversaries could aggregate 
query responses to piece together sensitive information, even when the data is 
aggregated, such as in the case of attention maps. Later works [23, 34]  demon-
strated that databases could be de-anonymised through cross-referencing with 
auxiliary information (i.e. shadow models) and individuals can be re-identified. 
This concern further grows in our case since eye data includes identifiers [8]  and  
quasi-identifiers (e.g. gender [39]). 

Inference attacks include: (i) membership inference attacks, introduced b y 
Shokri et al. (2017) [42], that allow adversaries to determine whether a par-
ticular data point was included in a model’s training set, (ii) mo del inversion 
attacks, demonstrated by Fredrikson et al. (2015) [15], that enables attackers to 
reconstruct sensitive input data from model outputs, and (iii) attribute infer-
ence attacks where adversaries leverage access to trained models to infer missing 
dataset attributes. In this paper, we focus on attribute inference attacks since 
they exploit indirect information, which users might not eve n realize could reveal
such insights.

Melis et al. (2019) [33] demonstrated the feasibility of such attacks in the 
context of collaborative learning, where participants may unknowingly expose 
sensitive information about their data to other participants. Recently, the work 
by Zhang et al. (2018) [55] revealed that attention maps generated by deep 
learning models, commonly used for interpretation, can unintentionally reveal 
sensitive patterns in the data, allowing attackers to infer underlying private 
information even without access t o the original dataset. In contrast, we focus on 
human atten tion maps generated through gaze data.

2.2 What Does the Inferred Information Reveal About the Users 
and the Corresponding Information Visualisation?

Numerous studies in eye tracking research and cognitive science have revealed 
that human eye movements can provide insights into a user’s mental state [6, 7], 
and this has inspired a growing number of research i n eye-based user mo d-
elling [21, 37, 47]. Previous works have also estimated participants’ lev els of text 
comprehension [1], intention [ 27, 40, 56], mind-wandering tendencies [ 22, 54], and 
recallability [ 49] from their eye movements. In addition, an increasing num-
ber of researchers have studied the correlations between human eye movements 
and tasks and proposed many successful gaze-based task recognition methods
[2, 5, 20, 21]. 

More specifically, in information visualisations, several eye-tracking datasets 
have been collected by researchers t o understand human visual attention for
bottom-up [3, 41] as well as top-down attention [17, 26, 38, 50]. In this paper, we
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focus on the most recent dataset by Wang et al. [50] that used the Bubble-
View technique [24] to collect SalChartQA, a large-scale question-driven dataset 
comprising 6,000 atten tion maps under a nalytical questions.

2.3 How Does Awareness of Attack Feasibility Aid in Mitigation 
Efforts?

Inspired by the famous side-channel attack on Apple passwords through gaze 
reflection [48], privacy-preserving eye tracking [ 4, 9, 28, 29] started to attract 
attention but remains under-investigated [18]. In particular, privacy threats are 
not yet well-understood, and the community remains unaware of the potential 
risks. Nonetheless, it remains necessary to share eye tracking data in order to 
cover the large variety in eye data and infer insights or train ML models [13, 14]. 
Hence, the associated privacy risks, the possible misuse of data copies, and the 
potential f or personal information leakage, e.g. i nference attacks, increase.

Hence, building on the above-mentioned works, our work investigates the 
feasibility of attribute inference attacks on information visualisations.

3 Attack Methodology 

In this section, we present our threat model and assumption about the adver-
sary’s capabilities. Then, we introduce the dataset used and the related chal-
lenges. Finally , we present AttentionLeak, our attribute inference attack on
attention maps.

3.1 Threat Mod el 

Adversary’s Goal. The main goal of the adversary is to infer attributes about 
the inputs (i.e. the visualisation images) given the gaze attention maps. In gen-
eral, the attack can be generalised to any visual attention scenario. However, 
in this paper, we focus on data visualisation since it incorporates information 
about different fields. We further focus on visual question-and-answer (VQA) 
scenarios s ince they are information-rich and can reveal insights about the user 
perception (i.e. information about the charts) as w ell as the user cognition (i.e.
the corresponding questions and answers).

Adversary’s Knowledge. We assume that the adversary has access to t he pub-
lic/leaked/inferred (c.f. Sect. 2) attention maps and does not have access to the 
private stimuli (i.e. visualisation images, questions, and answers). Nonetheless, 
the adversary can create shadow datasets by collecting publicly available stimuli 
with her selected attributes and mimicking the gaze attention maps.
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Adversary’s Strategy. The adversary starts by compiling the shadow dataset 
from public knowledge. She then trains a model that takes the shadow gaze 
attention maps as input and outputs the corresponding attribute(s). The pre-
dicted attribute(s) is compared against the shadow ground-truth attribute(s). 
In this paper, we investigate two main types of models: single- and multi-class 
classification models with different architectures. Once the model is trained, the 
adversary uses the model in inference mode to reveal information about the
victim dataset (i.e. the dataset to be attacked/targeted).

3.2 The Information Visualisation Dataset 

Fig. 2. Class distribution of the four tasks. Chart-type: horizontal bar chart (h-bar), 
vertical bar chart (v-bar), pie chart, and line chart. Chart-simplicity: simple and com-
plex. Question-type: filtering (F), finding extremum (FE), and retrieving values (RV). 
Answ er-complexity: easy, medium, and hard.

We target the SalChartQA dataset [50]. The dataset consists of 3,000 charts, 
with 2 questions per chart, resulting in 6, 000 question-driven attention maps. 
The mean participant number is 13.1 (with a minimum of 10 participants) per 
question. For each chart, participants’ attention maps are aggregated with a 
Gaussian filter with a 1-degree visual angle. We split the dataset into two sub-
sets (shadow and target dataset) with an 8:2 ratio. The shadow dataset is further 
split into train and validation sets with a 3:1 ratio. We ensure that each chart 
and participant occurs only in one subset to prevent information leakage from 
the same charts or participants into the different subsets. Therefore, we mod-
elled the participant, question, image, and relationship as a bipartite graph. We 
then calculated the connected components in this graph, where each node rep-
resents either a participant or a chart, and the edge represents the question. In 
other words, a participant node and a chart node are connected if the partici-
pant answers a question related to that chart. Then, we ensured that an entire
component only occurs either in the shadow dataset or in the target dataset.

Targetted Attributes. In our attack construction, the adversary targets four key 
attributes of SalChartQA to infer information about the chart, question, and 
answer. Note that the attribute d istribution is highly imbalanced in the dataset, 
as  shown in Fig. 2:
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– Chart-type: the dataset consists of three commonly used chart types: bar, 
line, and pie charts with an approximate ratio of 4:1:1, r espectively.

– Chart-simplicity: the charts are categorised into simple and complex 
according to the visual complexity of the image, e.g. the number of columns 
or the existence of stacked or grouped bars. The simple-to-complex r atio is 
8:3 for bar charts and 6:4 for line charts. All p ie charts are classified as simple.

– Question-type: Each chart image includes two questions of the following 
types: (i) compositional questions that contain mathematical/logical opera-
tions such as sum, difference or average, (ii) visual questions that refer to 
the image visual attributes such as colour, length/height of graphical marks, 
and (iii) data retrieval questions. Namely, we use the top-3 most occurring 
questions: filtering (F), finding extremum (FE) and retrieving values (RV).

– Answer-complexity: To illustrate that an adversary can infer additional, 
unintended attributes beyond those initially available in the dataset, we com-
pute the answer-complexity attribute. Answer-complexity is derived from the 
number of clicks performed by users to answer a question. This metric, there-
fore, outlines the complexity of answering a question. Hence, we calculate the 
0.25- and  0.75-quantile of the number of clicks per image type and assign 
the saliency maps w ith the number of clicks below the 0.25- quantile to the 
complexity easy between the quantiles to medium and t he ones over the 0.75-
quantile to hard.

Attention Maps. The SalChartQA dataset includes three types of attention 
maps: aggregation of all answers, correct answers only, and incorrect answers 
only. For our experiments, we mostly focus on the aggregation of correct answers 
because it helps to separate genuine visual cues from biases that might arise due 
to question phrasing, misinterpretation, or other cognitive and linguistic factors. 
By analyzing only the attention maps f rom correct answers, we can identify 
unbiased, task-relevant attention patterns that contribute to accurate responses 
to improve the reliability a nd fairness of our findings across diverse users and
contexts.

3.3 The AttentionLeak A ttack 

Using the shadow dataset, the adversary maps each attribute inference attack 
to an image single- or multi-classification task, taking the attention map as 
input and predicting the respective attribute class(es). The adversary can fur-
ther employ different types of model architectures depending on the access to 
resources (e.g. G PUs and datasets). We demonstrate the feasibility of the attack 
through three different model types: (i) a convolutional neural network (CNN),
e.g. Resnet101 [19], (ii) a vision transformer (ViT), e.g. ViT-b/16 [12], and (iii) 
a foundation model, e.g. Dino v2 [35]: 

Convolutional Neural Network (CNN). ResNet-101 [ 19] is a deep convolutional 
neural network (CNN) that embeds strong inductive biases about visual data
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directly into its architecture. Through its convolutional operations, it processes 
images in a way that inherently accounts for the locality and hierarchical nature 
of visual information – nearby pixels are more likely to be related than distant 
ones and visual features build up from simple to complex. This architectural 
bias, combined with its local receptive fields, makes ResNet-101 naturally data-
efficient for image processing tasks. The network consists of 101 layers organized 
into residual blocks, where each block can learn additional features while preserv-
ing already learned information through skip connections. This design allows for 
very deep networks while main taining stable training dynamics, making ResNet-
101 particularly effective even with moderate-sized datasets.

Vision Transformer (ViT). Vision Transformer (ViT) [ 12] represents a depar-
ture from traditional computer vision architectures by having minimal built-
in assumptions about image structure. Unlike CNNs, ViT treats images as 
sequences of patches and relies on self-attention mechanisms to learn relation-
ships between these patches from scratch. The “B/16” variant processes images 
by dividing them into 16× 16 pixel patches. These patches are linearly embed-
ded and combined with position embeddings before being fed int o a series of
transformer encoder blocks [45]. While this architecture is extremely flexible 
and can theoretically learn any kind of spatial relationship in the data, this 
flexibility comes at a cost of data efficiency. The model must learn these visual 
relationships from the data itself, rather than having them built into its architec-
ture. This explains why ViT models often underperform CNNs like ResNet101 
on smaller datasets, where the benefits of their flexibility cannot o vercome the
advantage of CNNs’ built-in inductive biases.

Probed Foundation Model. Nowadays, it is becoming more and more common to 
work with embeddings of large-scale pre-trained foundation models and apply 
classical classification algorithms on top of these embeddings. We calculate 
embeddings of all attention maps using the image feature extraction pipeline
from Huggingface [52] with Dino v2 [ 35]. These embeddings are then classified 
for the respective attributes using Logistic Regression or Random Forest.

Single- and Multi-task Training. The adversary inputs the attention maps to the 
attack model after rescaling them to a maximum height/width of 224, without 
changing the aspect ratio (no normalisation is computed). The model is trained 
using a cross-entropy loss. In the single-task training, the adversary trains the 
attack model on one of the four tasks and outputs one class. 

#tasks∑

i=1

(
1 
σ2 
i 

Li + log σi

)
, 

where Li is the respective cross entropy loss of task i and log σi is learned. 
This method is effective, simple to implement, and keeps the number of hyper-
parameters low.
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4 Evaluation 

In this section, we show, through extensive experiments, (i) if it is possible to infer 
private information solely from the attention maps, (ii) the effect of multi- and 
single-task attacks, (iii) the shadow model variations that a n adversary can use 
(e.g. architectures and hyperparameters), (iv) the quantitative and q ualitative
information that an adversary can gain.

4.1 Implementation D etails 

We use ResNet-101 and ViT-B/16 models from the p ytorch-image-models library 
[51], pretrained on the ImageNet dataset [10]. We trained all models on a single 
NVIDIA A 100-40 GPU.

For evaluation, we use both micro- and macro-average accuracy to better 
assess the performance on majority as well as minority classes: 

Micro-Averaging Accuracy (Acc) =
∑C 

i=1(TP i + TNi)
∑C 

i=1(TPi + TNi + FPi + FNi) 
(1) 

Macro-Averaging Accuracy (Macro Acc) = 
1 

C 

C∑

i=1 

TPi + TNi 

TPi + TNi + FPi + FNi 
(2) 

where C denotes the num ber of classes.
We use two baselines for comparison: (i) random guessing and (ii) predict-

ing the majority class. In the case of random guessing, the micro- and macro-
accuracy is 1 

C . For predicting the majority class, the macro-accuracy is 1 
C and 

the micro-accuracy depends on how imbalanced the label distribution is. The 
more imbalanced, the higher the micro-accuracy.

We conducted extensive hyperparameter optimization across five distinct 
classification tasks: multi-task, chart-type, chart-simplicity, question-type, and 
answer-complexity classification. For each task, we optimized for maximum 
macro accuracy on the validation set. The s earch space was consistent across 
all tasks and included three optimizer variants (Adam [25], AdamW [ 30], and 
SGD with Nesterov momentum [44]), with learning rates ranging from 1e − 4 to 
5e−1. We also explored the impact of data augmentation and sampling strategies 
(random vs. balanced) on m odel performance.

4.2 Is It Possible to Infer Chart-, Question-, and Answer-Related 
Attributes from Attention Maps Alone?

Our main goal is to evaluate the feasibility of inferring chart-, answer- and 
question-related attributes solely from gaze attention maps. Table 1 compares 
various models, including random and majority baselines, CNNs, ViTs, and 
probed foundation models, in predicting attributes such as chart-type, chart-
simplicity, question-tpe,  and  answer-complexity. All models substantially out-
perform random chance and majority baselines, with fine-tuned neural architec-
tures achieving notably higher accuracy. Fully fine-tuned models such as ResNet-
101 and ViT-B/16 demonstrated strong performance, particularly in detecting
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chart-type and chart-simplicity, achieving a macro accuracy of up to 89.59% and 
88.32%, respectively. These results indicate that human attention maps contain 
a significant amount of information that can reveal private details about the 
chart (e.g. chart-type and chart-simplicity), the question (e.g. question-type ), 
and the answer (e.g. answer-complexity), underscoring potential privacy risks of 
attention maps in gaze-based applications and side channel attacks.

Table 1. Different neural architectures used for inferring attributes from attention 
maps alone. All models outp erform the baselines, highlighting the privacy risks.

Model Fully Chart-type Chart-simplicity Question-type Answer-complexity 
Fine-tuned Macro Acc Acc Macro Acc Acc Macro Acc Acc Macro Acc Acc 

Baselines 
Majority - 25.00 47.61 50.00 60.20 33.33 55.96 33.33 50.63 
Random - 25.00 25.00 50.00 50.00 33.33 33.33 33.33 33.33 
CNNs 
ResNet-101 � 89.59 89.42 88.32 89.17 50.79 52.54 64.52 59.78 
ViTs 
ViT-B/16 � 87.69 89.08 86.48 86.73 47.70 56.51 63.88 61.13 
Probed Foundation Models 
Dino v2 + Random Forest × 69.67 75.65 78.88 80.19 39.70 58.63 51.36 58.02 
Dino v2 + Logistic Regression × 80.30 81.52 80.54 81.78 45.30 53.74 53.04 54.07

Interestingly, despite the advancements of vision transformers in computer 
vision, our findings show that CNNs outperform ViTs mixed ViT vs. CNN result. 
While ViTs B/16 has a roughly double parameter count, ResNet-101 outperforms 
the ViT model on three out of the four attributes tested—namely, chart-type, 
chart-simplicity,  and  question-type. Conversely, ViT achieves (an insignificant) 
higher accuracy on answer-complexity. One possible explanation is the nature 
of the pre-training data. Both ViTs and CNNs, typically undergo pre-training 
on large image datasets that may not align well with the unique characteris-
tics of gaze attention maps. As a result, features from these large models may 
not transfer as effectively to gaze data, potentially leading to overfitting. While 
ResNet-101 is also pre-trained on image data, it has fewer parameters, poten-
tially leading to less overfitting when faced with this unfamiliar data. In addition, 
gaze attention maps typically have strong local spatial correlations (e.g., con-
centrated fixations or heatmaps), which CNNs, like ResNet-101, are designed to 
exploit through hierarchical feature extraction. ResNet uses convolutional filters 
to capture local textures and s tructures efficiently, whereas ViTs rely on global 
self-attention, which may struggle with localized patterns. Moreover, ResNet-101 
has strong inductive biases (translation invariance, local receptive fields), mak-
ing it better suited for structured, spatially dependent data like attention maps. 
ViTs rely on self-attention mechanisms without built-in spatial biases, requiring 
large-scale training to learn such relationships effectively. Similarly, the founda-
tion models (Dino v2, also ViT-based) are pre-trained on very large datasets in a 
self-supervised manner, and instead of being fully fine-tuned, the models remain 
frozen with only a classifier applied to their extracted features.
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Table 2. Multi-Task (MT) vs Single-Task (ST) training regime for inferring attributes 
from attention maps. Performance deltas show that MT training particularly improves 
question-type classification, which was the primary obj ective for model selection on the 
validation set, while sho wing varying effects on other a ttributes.

Attribute Model Macro Acc. MT Macro Acc. ST Δ Macro Acc. Acc. MT Acc. ST Δ Acc. 

Chart-type ResNet-101 87.80 89.59 −1.79 89.01 89.42 −0.41 
Chart-type ViT-B/16 80.76 87.69 −6.93 83.38 89.08 −5.70 
Chart-simplicity ResNet-101 89.97 88.32 +1.65 91.04 89.17 +1.87 
Chart-simplicity ViT-B/16 86.24 86.48 −0.24 87.17 86.73 +0.44 
Question-type ResNet-101 53.18 50.79 +2.39 60.48 52.54 +7.94 
Question-type ViT-B/16 52.45 47.70 +4.75 54.85 56.51 −1.66 
Answer-complexity ResNet-101 59.84 64.52 −4.68 62.51 59.78 +2.73 
Answer-complexity ViT-B/16 60.40 63.88 −3.48 62.33 61.13 +1.20 

Looking at different attributes, distinguishing chart-type and chart-simplicity 
appears to be relatively simple, with ResNet-101 achieving 89.59% and 88.32% 
macro accuracy. In contrast, inferring question-type and answer-complexity are 
more challenging, with the best macro accuracy score of 50.79% and 64.52.  This  is  
not surprising since chart-type and chart-simplicity are visually-driven attributes 
while identifying cognitiv ely-driven attributes, such as the type of question and 
the answer that users attempt to solv e, might require very subtle ey e gaze c ues. 

Overall, these findings suggest that gaze data alone can effectively reveal 
chart-, question-, and answer-related attributes, posing privacy concerns. We 
show that even if an adversary has limited access to resources (e.g. GPUs or 
shadow data), she can effectively infer attributes through lower-parameter archi-
tectures (e.g. CNNs) as this task and modality are relativ ely data-scarce. 

4.3 Single vs. Multi-task Models for Inferring Multiple Attributes 
from Attention M aps 

In addition to specific targetted attributes, an adversary might be interested 
in inferring multiple sensitive attributes simultaneously. We, therefore, further 
investigate the effectiveness of Multi-Task (MT) versus Single-Task (ST) train-
ing for inferring multiple chart-, question-, and answer-related attributes from 
attention maps. 

As  shown  in  Table  2 and Fig. 3, ST training performs best in visually-driven 
attributes such as chart-type and answer-complexity while MT performs better 
for the other attributes. These findings are due to the fact that ST excels in 
tasks requiring in-depth modelling of nuanced features o r patterns by allocating 
all resources to capturing these intricate details. 

Furthermore, our analysis of the confusion matrices, shown in Fig. 4, 
reveals biases toward over-represented classes, particularly for the question-
type attribute (FE class) and the answer-complexity attribute (medium class), 
with a notable amount of false positives. This is mostly because, in atten tion-
based models (e.g., Vision Transformers, attention layers i n CNNs), these c lasses 
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receive higher attention weights, making their activation maps more pronounced 
and consistent, exhibiting highly predictable attention distributions. Neverthe-
less, these results highlight that, despite some biases, the models can accurately 
infer sensitive information from attention maps, often revealing details about 
the chart, question, and answer. 

Multi-task (MT) training demonstrates notable improvements in question-
type classification, the most challenging attribute. While question-type accuracy 
remains lower compared to other attributes, both arch itectures show substantial 
gains under MT training, with macro accuracy improvements of +2.39% and 
+4.75% for ResNet-101 and ViT-B/16 respectively, indicating that the shared 
representations l earned through MT training effectively address our primary 
objectiv e of enhancing question-typ e inference. 

Fig. 3. Qualitative results for Multi-Task (MT) vs S ingle-Task (ST) training. 

4.4 Optimizer Effect on the A ttack Success 

We demonstrate the effect of the different optimization techniques on the attack 
success by pairing the ViT and CNN models with Adam, Adam W, and Stochastic 
Gradient Descent (SGD) optimizers for all four attributes. Figure 5 shows that 
SGD optimization performs particularly well with the ViT model. Since the ViT 
model relies on self-attention mechanisms that capture long-range dependencies 
and global contextual information in images, ViT models are therefore, sensitive 
to weight updates that align well with global features. SGD, with its s teady 
convergence, often works well for ViTs, as it avoids the risk of overfitting and 
allows for stable learning of these global patterns a cross lay ers. 

For CNN-based models, the results are more mixed, with some tasks ben-
efiting from AdamW and others f rom SGD or Adam. This is due to the fact 
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Fig. 4. Confusion matrices results on the SalChartQA d ataset. 

that CNNs focus on local features through convolutional layers, which capture 
spatial hierarchies by learning increasingly complex feature maps from layer to 
layer. The features are often localized, meaning that different parts of the model 
capture different aspects o f the data. This architectural difference creates diverse 
learning dynamics across layers, leading to mixed results with different optimiz-
ers dep ending on the task. 

4.5 Data Augmentation Effect on the Attack Success 

Depending on the adversary’s access to shadow data, she might exploit data 
augmentation techniques to compensate for limited data access. Hence, we inves-
tigate the effect of training with and without data augmentation on the attack 
success. For non-augmented input, the longer edge of the image is rescaled to 
224 pixels, the shorter edge is padded equally on both sides to 224 pixels. This 
ensures that the entire attention map, including borders, is always present. This 
procedure is done in both training on the s hadow dataset and attacking the 
victim dataset. With augmentation, we first randomly flip the image over the 
horizontal axis. Then, we randomly crop out a patch with the scale of 90% to 
110% of the original image and an aspect ratio between 0.9 and 1.1. S caling a 
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Fig. 5. The effect of the optimiser choice on the attack success. Each dot is the respec-
tive b est-performing attack model measured by macro accuracy . 

Fig. 6. The effect of data augmentation on the attack success. Even minimal and care-
fully chosen data augmentation techniques (e.g. horizontal flipping, scaling and changes 
in aspect ratio) led to decreased classification performance, suggesting that preserving 
the exact visual characteristics of the attention maps i s crucial for a successful attack. 

plot and the attention map or changing the aspect ratio, i.e., stretching or com-
pressing the image, does not change any information present in both images. 

Despite the relatively simple image transformations, we observe a consis-
tent performance drop across all attributes when using augmentation (Fig. 6), 
showcasing that typical augmentations used in visual recognition might not be 
suitable for attention maps. This effect is particularly pronounced for chart-
type, where accuracy is ∼30% higher without augmentation. For question-type, 
accuracy improves by around ∼5% without augmentation. These findings sug-
gest that standard transformations like shifting and cropping, which are usually 
effective in computer vision, disrupt the spatial and relational integrity crucial 
for gaze d ata and special data augmentation methods need to be developed for 
this modality. In other words, an adversary requires a real-world shadow dataset 
or a specially-designed augmentation technique for attention m aps. 
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5 Discussion 

We demonstrate that gaze-based attention maps alone can effectively reveal sen-
sitive information about the underlying chart, question, and answer in informa-
tion visualisations, raising potential privacy concerns. Despite no direct access 
to the chart, our results indicate that attention maps c an expose both visual 
content (e.g. chart-type) and aspects of user i ntent (e.g. answer-complexit y). 

Our results show that an adversary with limited compute power can still 
be successful through (i) lower-parameter models like CNNs (e.g., ResNet-101) 
may outperform larger models like ViTs, presumably due to the data scarcity 
of the gaze modality, or (ii) training only one model since multi-task (MT) 
training improves accuracy for cognitively-driven attributes, lik e question-type. 
Nonetheless, we show that standard augmentation techniques used in visual 
recognition (e.g., cropping, flipping) are not suitable for atten tion maps and, 
therefore, do not solve the limited access to d ata issue. 

Limitations and Future Work. We mainly focused on demonstrating the feasi-
bility of attribute inference attacks on information visualisations. Nonetheless, 
further attributes could be inferred about (i) the information visualisation, such 
as the linguistics of the question and answer (e.g. number of characters and the 
visual references), and the topics ( e.g. politics, economy, health, and society), 
as well as (ii) the users in the data suc h as their cognitive states and attention 
mo dels. 

Privacy and Ethics Statement. Demonstrating the feasibility and simplicity of 
these attacks is critical for raising awareness within the community about the 
potential privacy and ethical risks associated with human attention data. By 
showcasing the vulnerabilities, we underscore the need for robust safeguards 
to prevent the unintentional leakage of sensitive information, foster responsible 
development, and motivate the creation of privacy-preserving solutions. Without 
a clear understanding of the risks, researchers and developers may inadvertently 
overlook the ethical implications, leav ing systems exposed to exploitation and 
users’ data privacy a t risk. 

6 Conclusion 

For the first time, we were able to demonstrate the feasibility of gaining informa-
tion from gaze attention maps alone. We further show that an adversary, even 
with limited resources in terms of data and compute power, is able to retrieve 
the private information encoded and glean insights about the chart, question, 
and answer in information visualisations. Our work, therefore, highlights these 
potential threats to increase awareness and encourage the community to develop 
appropriate privacy-preserving solutions. 
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