
Ubic: Bridging the Gap between Digital

Cryptography and the Physical World

Mark Simkin1, Dominique Schröder1, Andreas Bulling2, and Mario Fritz2

1 Saarland University
Saarbrücken, Germany

2 Max Planck Institute for Informatics
Saarbrücken, Germany

Abstract. Advances in computing technology increasingly blur the
boundary between the digital domain and the physical world. Although
the research community has developed a large number of cryptographic
primitives and has demonstrated their usability in all-digital communi-
cation, many of them have not yet made their way into the real world due
to usability aspects. We aim to make another step towards a tighter inte-
gration of digital cryptography into real world interactions. We describe
Ubic, a framework that allows users to bridge the gap between digital
cryptography and the physical world. Ubic relies on head-mounted dis-
plays, like Google Glass, resource-friendly computer vision techniques as
well as mathematically sound cryptographic primitives to provide users
with better security and privacy guarantees. The framework covers key
cryptographic primitives, such as secure identification, document verifi-
cation using a novel secure physical document format, as well as content
hiding. To make a contribution of practical value, we focused on making
Ubic as simple, easily deployable, and user friendly as possible.

Keywords: Usable security, head-mounted displays, ubiquitous cryp-
tography, authentication, content verification, content hiding.

1 Introduction

Over the past years, the research community has developed a large number of
cryptographic primitives and has shown their utility in all-digital communica-
tion. Primitives like signatures, encryption schemes, and authentication proto-
cols have become commonplace nowadays and provide mathematically proven
security and privacy guarantees. In the physical world, however, we largely re-
frain from using these primitives due to usability reasons. Instead, we rely on
their physical counterparts, such as hand-written signatures, which do not pro-
vide the same level of security and privacy. Consider the following examples:

Authentication. In practice, most systems, such as ATMs or entrance doors,
rely on the two-factor authentication paradigm, where a user, who wants to
authenticate himself, needs to provide a possession and a knowledge factor. At

M. Kuty�lowski and J. Vaidya (Eds.): ESORICS 2014, Part I, LNCS 8712, pp. 56–75, 2014.
c© Springer International Publishing Switzerland 2014

Bridging the Gap between Digital Cryptography and the Physical World 57

an ATM, for instance, the user needs to enter his bank card and a PIN in
order to gain access to his bank account. Practice has shown that this type of
authentication is vulnerable to various attacks [1,2,3], such as skimming, where
the attacker mounts a little camera that films the PIN pad and a fake card reader
on top of the actual card reader that copies the card’s content. Here, the fact
that users authenticate with fixed credentials is exploited to mount large scale
attacks by attacking the ATMs rather than specific users.

Hand-written signatures. Physical documents with hand-written signatures are
the most common form of making an agreement between two or more parties
legally binding. In contrast to digital signatures, hand-written signatures do not
provide any mathematically founded unforgeablility guarantees. Furthermore,
there is no well-defined process of verifying a hand-written signature. This would
require external professional help, which is expensive, time consuming, and there-
fore not practical.

Data privacy. Todays workplace is often not bound to specific offices or build-
ings any more. Mobile computing devices allow employees to work from ho-
tels, trains, airports, and other public places. Even inside office buildings, novel
working practices such as ’hot-desking’ [4] and ’bring your own device’ [5] are
employed more and more to increase the employee’s satisfaction, productivity,
and mobility. However, these new working practices also introduce new privacy
threats. In a mobile working environment, potentially sensitive data might be
leaked to unauthorized individuals, who can see the screen of the device the em-
ployee is working on. A recent survey [6] of IT professionals shows that this form
of information theft, known as shoulder surfing, constantly gains importance.
85% of those surveyed admitted that they have at least once seen sensitive infor-
mation that they were not supposed to see on somebody else’s screen in a public
place. 80% admitted that it might be possible that they have leaked sensitive
information at a public place.

In this work, we present Ubic, a framework and prototype implementation of a
system that allows users to bridge the gap between digital cryptography and the
physical world for a wide range of real world applications. Ubic relies on head-
mounted displays (HMDs), like Google Glass1, resource-friendly computer vision
techniques as well as mathematically sound cryptographic primitives to provide
users with better security and privacy guarantees in all of the scenarios described
above in a user-friendly way. Google Glass consists of a little screen mounted
in front of the user’s eye and a front-facing camera that films the users view.
It supports the user in an unobtrusive fashion by superimposing information on
top of the users view when needed.

1.1 Contributions

To make a contribution of practical importance, in this work we focus on pro-
viding a resource-friendly, easy-to-use system, that can be seamlessly integrated
into the current infrastructures. Ubic offers the following key functionalities:

1 https://www.google.com/glass/

https://www.google.com/glass/

58 M. Simkin et al.

Authentication. We use a HMD in combination with challenge-response proto-
cols to allow users to authenticate themselves in front of a device, such as an
ATM or a locked entrance door. In contrast to current solutions, the PIN is not
fixed but generated randomly each time. Neither does an attacker gain any in-
formation from observing an authentication process, nor does he gain any from
compromising the ATM or the bank, since they can only generate challenges,
but not solve them. Copying the card does not help the attacker, since it does
not contain any secret information, but merely a public identifier.

Content Verification. We enable the generation and verification of physical con-
tracts with mathematically proven unforgeability guarantees. For this purpose,
we propose a new document format, VeriDoc, that allows for robust document
tracking and optical character recognition, and contains a digital signature of its
content. Using the HMD, a user can conveniently and reliably verify the validity
of the document’s content.

Two-Step Verification. Based on the signature functionality described above,
we introduce two-step verification of content. During an online banking session,
for instance, a user might request his current account balance. This balance is
then returned along with a signature thereof. Using the HMD, we can verify the
signature, and therefore verify the returned account balance. In this scenario, an
attacker would need to corrupt the machine that is used for the banking session
and the HMD at the same time in order to successfully convince the user of a
false statement.

Content Hiding. We provide a solution for ensuring privacy in the mobile work-
place setting. Rather than printing documents in plain, we print them in an
encrypted format. Using the HMD, the user is able to decrypt the part of the
encrypted document that he is currently looking at. An unauthorized individual
is not able to read or decrypt the document without the corresponding secret
key. Companies commonly allow employees with certain security clearances to
read certain documents. We use predicate encryption to encrypt documents in
such a way that only employees with the requested security clearances can read
them.

1.2 Smartphones vs. Head-Mounted Displays

It might seem that all of the above scenarios could also be realized with a smart-
phone. This is not the case. In the content hiding scenario, we rely on the fact
that the decrypted information is displayed to the user right in front of his eye.
A smartphone is still vulnerable to shoulder-surfing and would therefore not
provide any additional privacy guarantees. Realizing the authentication scenario
with a smartphone is also problematic because a loss of possession is hard to
detect and therefore an attacker might gain access to all secret keys as soon as
he obtains the phone. Requiring the user to unlock the phone before each au-
thentication process does not solve the problem, since the attacker might simply
observe the secret that is used to unlock the phone.

Bridging the Gap between Digital Cryptography and the Physical World 59

Fig. 1. Overview of the Ubic processing and interaction pipeline for the different
operation modes: identification (a), content verification (b), and content hiding (c).
The user starts each interaction by scanning the header 2D-barcode (indicated in gray).
Ubic then guides the user through each process by providing constant visual feedback.

Ubic overcomes this problem by using the so-called on-head detection feature
of the Google Glass device2. The device is notified whenever it is taken off and
at this point, Ubic removes all keys from the memory and only stores them in an
encrypted format on internal memory. HMDs are considered to be companions
that are worn the whole day and only used when needed. When a user puts
on the device in a safe environment, he has to unlock it once through classical
password entry. Future versions might be equipped with an eye tracker, which
would allow gaze-based password entry [7].

2 The Ubic Framework

The key aim of Ubic is to provide a contribution of practical importance that
bridges the gap between digital cryptography and real world applications. We
put emphasis on making our solutions as simple as possible and only use well re-
searched and established cryptographic primitives in combination with resource
friendly computer vision techniques to allow for easy deployment and seamless
integration into existing infrastructures.

The general processing and interaction pipeline of Ubic is shown in Figure 1.
Each interaction is initialized by the user scanning the header 2D-barcode (in-
dicated in gray). The header code is composed of the framework header and an
application specific header. The former contains the framework version as well
as the mode of operation, e.g. identification, content verification, content hid-
ing; the latter is an application specific header, containing information that is
relevant for the given application.

Assumptions. The general setting we consider is a user who communicates
with a possibly corrupted physical token over an insecure physical channel. In

2 https://support.google.com/glass/answer/3079857

https://support.google.com/glass/answer/3079857

60 M. Simkin et al.

Table 1. Maximum storage capacity for alphanumeric characters of a version 40 QR
code in comparison to the error correction level and the maximum damage it can
sustain

EC level L M Q H

Max. damage (%) 7 15 25 30

Max. characters 4296 3391 2420 1852

this work, we concentrate on the visual channel in connection with HMDs, such
as Google Glass. However, our framework can be adapted and extended easily
to support other physical channels, such as the auditory channel, if needed.
The visual channel is very powerful and key to the vast majority of interactions
that humans perform in the real-world. HMDs are personal companions that,
in contrast to smartphones, sit right in front of the user’s eyes. Google Glass
comprises an egocentric camera that allows us to record the visual scene in
front of the user, as well as a display mounted in front of the user’s right eye.
While the developer version that we used could still allow an observer to infer
information about the content shown on the display by looking at it from the
front, we assume that this is not possible in our attack scenarios. We consider
this to be a design flaw of some of the first prototypes, which can be solved easily.
Since the display only occludes a small corner of the user’s field of view, it could
simply be made opaque. We further assume that HMDs are computationally
as powerful as smartphones. In practice, this can be achieved by establishing a
secure communication channel between the HMD and the user’s smartphone.

An encoder E = (Encode,Decode) is used to transform digital data from
and to a physical representation. We will not mention error-correcting codes ex-
plicitly, since we assume them to be a part of the encoder. In particular, our
framework uses two-dimensional barcodes, called QR codes [8]. These codes are
tailored for machine readability and use Reed-Solomon error correction [9]. De-
pending on the chosen error correction level, the barcode’s capacity differs. Table
1 provides a comparison of their storage capacity for alphanumeric characters
and their robustness.

3 Authentication

Our goal was to design an authentication mechanism that allows a user to au-
thenticate himself in front of a token, such as a locked door or an ATM, without
revealing his secret credentials to any bystanders who observe the whole authen-
tication process. In addition, even a malicious token should not be able to learn
the user’s secret credentials. We focused on providing a solution, which is easy to
deploy into the current infrastructures, i.e. merely a software update is required,
and is as simple and user-friendly as possible.

Bridging the Gap between Digital Cryptography and the Physical World 61

Fig. 2. Visualization of a identification
scheme using an optical input device

framework header

tid uid GPS

encrypted challenge

timestamp

signature

Fig. 3. The identification header
composed of the framework and
application header

3.1 Threat Model

We consider two different types of adversaries for the authentication scenario. An
active adversary is able to actively communicate with the user and impersonate
the token. He has access to all secrets of the token itself. His aim is to learn
a sufficient amount of information about the user’s credentials to impersonate
him at a later point in time. Note that security against active adversaries implies
security against passive adversaries, who are only able to observe the data that
the user passes to the token during the authentication process. Passive adver-
saries represent the most common real world adversaries, who can mount attacks
like shoulder surfing and skimming. A man-in-the-middle adversary is able to
misrepresent himself as the token. He is able to communicate with the user and
a different token and forward possibly altered messages between the two parties.
He does not have the token’s secret keys. His aim is to authenticate in front of
a different token, while communicating with the user.

Insecurity of current approaches. Clearly, the most common widely deployed so-
lutions, such as those used at ATMs, do not provide sufficient protection against
such adversaries. During an authentication process the user’s fixed PIN and
card information is simply leaked to the adversary, who can then impersonate
the user.

3.2 Our Scheme

Let Πpke = (Gen,Enc,Dec) be a CCA2 secure public-key encryption [10] and
DS = (KgSig, Sig,Vf) a digital signature scheme secure against existential forgery
under an adaptive chosen message attack (EU-CMA) [10], where KgSig is the
key generation algorithm, Sig is the signing algorithm, and Vf, the verification
algorithm. We assume that the token has knowledge of the user’s public key.
In the case of an ATM, the key could be given to the bank during registra-
tion. Our protocol is a challenge-and-response protocol that we explain with
the help of Figure 2. The entire communication between the user and the token
uses a visual encoder, which transforms digital information to and from a visual
representation. The user initiates the protocol by sending his identifier id to
the token. The challenger retrieves the corresponding public key from a trusted

62 M. Simkin et al.

database, checks the validity of the key, and encrypts a randomly generated chal-
lenge ch← {0, 1}n using the public-key encryption scheme Πpke. The application
header for the identification scenario can be seen in Figure 3. It contains a token
identifier (tid), a user identifier (uid), the encrypted challenge, a timestamp, and
the token’s GPS location. The application header is signed with DS by the token
and the signature is appended to the application header. It then generates a QR
code consisting of the framework, and the application header.

The resulting QR code is displayed to the user, who decodes the visual rep-
resentation with his HMD, parses the header information, checks the validity of
the signature, the date of the timestamp, whether his location matches the given
location, and decrypts the encrypted challenge to obtain ch. The user sends back
ch to the token to conclude the authentication process. In the case of an ATM
or a locked door, the last step can be done via a key pad. Choosing the length
of the challenge is a trade-off between security and usability.

Security Analysis. Due to page constraints, we only provide an informal rea-
soning, showing that none of our three adversaries can be successful. Note that
security against the active adversary already implies security against a passive ad-
versary. Since we assumed that Πpke = (Gen,Enc,Dec) is secure against chosen-
ciphertext attacks, an adversary is not able to infer any information about the
plaintext, i.e. the encrypted PIN, from the given ciphertext, even if he is able to
obtain encryptions and decryptions for messages of his choice. This ensures that
an (active) adversary can only guess the challenge, since he effectively plays the
CCA2 game. To prevent man-in-the-middle attacks, we use an idea called authen-
ticated GPS coordinates, recently introduced by Marforio, Karapanos, and Sori-
ente [11]. We assume that the man-in-the-middle attack is perfomed on two tokens
that are at different locations. Recall that each token signs its challenges along
with its own GPS location. An adversary is not able to simply forward these chal-
lenges between two tokens, since the user, upon receiving a challenge, verifies the
signature of the challenge and compares its own location to the signed location.
Hence, such an adversary would need to break the unforgeability of DS to be able
to forward challenges that will be accepted by the user.

4 Content Verification

Fig. 4. The VeriDoc document
format

The goal of our content verification function-
ality is to enable the generation and verifi-
cation of physical documents, such as receipts
or paychecks, with mathematically proven un-
forgeability guarantees. In particular, the va-
lidity of such documents should be verifiable
in a secure, user-friendly, and robust fashion.
The combination of physical documents with
digital signatures is a challenging task for sev-
eral reasons. Firstly, the document’s content

Bridging the Gap between Digital Cryptography and the Physical World 63

Algorithm 1: Signing

input : m, sid, sk, layout
output: Header token TokenH and ;

side tokens Token1, . . . ,Token�

Hf ← GenFrameworkHeader(Verification)
choose a random did ← {0, 1}n;
parse m = 1, . . . ,m�;
set hH ← H(Hf , sid, did, �, layout);
set σH ← Sig(sk, hH);
set TokenH ← Encode(Hf , sid, did, �, layout, σH);

Compute QR codes for each message block
for i = 1, . . . , � do

hi ← H(did,mi, i) ;
σi ← Sig(sk, hi) ;

Tokeni ← Encode(i, σi);

return TokenH ,Token1, . . . ,Token�

Fig. 5. The signing algorithm

Algorithm 2: Verify

input : Document D
output: Valid or Invalid

Verify the document header
(Hf , sid, did, �, layout) ← Decode(TokenH);
set hH ← H(Hf , sid, did, �, layout);
set vk ← PKI(sid);
return 0 if Vf(vk, hH , σH) = 0;

Verify each message block
for i = 1, . . . , nb do

mi,Tokeni ← OCR(bi) //see Section 6;
hi ← H(did,mi, i) ;
i, σi ← Decode(Tokeni);
return 0 if Vf(vk, hi, σi) = 0 ;

return 1

Fig. 6. The verification algorithm

must be human-readable, which prevents us from using machine-readable visual
encodings like QR codes. Secondly, we must be able to transform the human
readable content into a digital representation such that we can verify the dig-
ital signature. Here, we apply techniques from computer vision such as optical
character recognition (OCR). However, OCR has to be performed without any
errors and from a practical point of view OCR is very unlikely to succeed without
any errors when reading a whole document with an unknown layout. Observe
that error-correction techniques cannot be applied, since a contract that says
“Alice gets $100” is very different from one that says “Alice gets $1.00”. Using
error-correction one could transform a wrong document into a correct one, which
would result in a discrepancy between what the user sees and what is verified.
To overcome the aforementioned problems and provide a practical and useable
solution, we developed a novel document format, called VeriDoc (see Figure 4).
This document facilitates robust document tracking and optical character recog-
nition by encoding additional layout information into it. The layout information
is encoded in a header QR code (a) and signatures for each block are encoded
into separate QR codes (b).

4.1 Threat Model

Based on the standard EU-CMA notion for digital signature schemes, we consider
the following adversary: In the first phase, the query phase, the adversary is able
to obtain a polynomial number of (signed) VeriDoc documents for documents of
his choice from some user Alice. In the second phase, the challenge phase, the
adversary outputs a VeriDoc document D and wins if D verifies under Alice’s
public key and was not signed by her in the first phase.

64 M. Simkin et al.

4.2 Our Scheme

Let DS = (KgSig, Sig,Vf) be a signature scheme secure against EU-CMA and H
a collision-resistant hash function.

Content Signing: A formal description of the signing algorithm is depicted
in Figure 5. It takes the signer’s private key sk, his identifier sid, the message
m = m1, . . . ,m� consisting of � blocks as input and the layout information layout.
First, the algorithm computes the document header TokenH , which comprises
of the framework header and the application header. The application header
contains the signer’s id sid, a randomly generated document id did, the number
of message blocks �, and layout. This header is signed and the signature σH is
appended to the header itself. In the second step, each message blockmi is signed
along with did and it’s position i. All generated signatures are encoded into QR
codes and printed onto the document next to the corresponding message blocks
(see Figure 4).

Content Verification: The content verification algorithm, depicted
in Figure 6, is given a signed document D consisting of blocks bi and veri-
fies its validity. The extraction of a message block, the corresponding signa-
ture, as well as the underlying computer vision techniques that are used are
simplified to OCR(·) in this description. A description of OCR(·) will be pro-
vided in Section 6. In the first step, the document header TokenH is parsed
by the computer vision system. Using the signer’s id sid, the corresponding
public key vk is obtained from a PKI. Afterwards, the verification algorithm
checks the validity of each block. To do so, the algorithm first reads the mes-
sage block along with its signature (mi,Tokeni) ← OCR(bi), it computes the
hash value hi ← H(did,mi, i), extracts the signature from the corresponding QR
code, i.e. (i, σi) ← Decode(Tokeni) and outputs 0 if the signature is invalid,
i.e., if Vf(vk, hi, σi) = 1. If all checks are valid, then the verification algorithm
outputs 1.

Security Analysis. We assume that the underlying signature scheme DS =
(KgSig, Sig,Vf) that is used to generate the VeriDoc documents is secure against
EU-CMA. This means that an adversary is allowed to obtain signatures on mes-
sages of his choice adaptively and he is not able to generate a valid signature for a
new message that was not queried to the signing oracle before (except with neg-
ligible probability). Furthermore, we assume that the hash function is collision-
resistant, meaning that an efficient adversary finds two distinct messages m0,m1

that map to the same image H(m0) = H(m1) only with negligible probability. In
the query phase, the adversary obtains signed tokens for messages of his choice.
Note that for each signed token a new random document id did ∈ {0, 1}n is
generated and the header also contains the number of blocks �. This document
id prevents so called mix-and-match attacks, where a new valid document is
generated by mixing message blocks from other valid documents. Since the id is
n-bit long, where n is the security parameter and we consider poly-time adver-
saries, the probability of two documents having the same id is negligible in n.

Bridging the Gap between Digital Cryptography and the Physical World 65

Since the signed document header contains the number of message blocks and
all blocks are enumerated according to their ordering in the layout, an adver-
sary can neither rearrange, nor remove any message blocks without breaking the
unforgeability of the signature scheme. Thus, the resulting VeriDoc document is
also existentially unforgeable under chosen message attacks.

4.3 Two-Step Verification

Over the past years a constant increase in digital crime, such as identity theft,
has been observed. To counteract these developments, companies like Facebook,
Google, Yahoo, and many others allow users to use a technique known as two-
factor authentication [12], when using their services. During such an authentica-
tion process, an additional layer of security is introduced by requiring a second
authentication factor, e.g. a physical token, along with the password. In a similar
vein we introduce the two-step verification technique that introduces a second
step into the process of verifying retrieved content. Consider, for example, a
user, who requests his account balance during an online banking session. If the
machine that is used is untrusted and possibly even compromised, then the user
cannot verify the correctness of the returned balance. To overcome this problem,
we use our content verification technique described in Section 4, meaning that
in our banking example the account balance is returned together with a visually
encoded signature thereof. Using the HMD we parse the signature and the ac-
count balance and verify its correctness. An adversary, who wants to convince a
user of a false statement, would need to compromise the machine, that is used
by him, and the HMD simultaneously, which is considerably harder to achieve
in practice. Due to the simplicity of the two-step verification technique, it could
easily be integrated into many existing systems immediately.

5 Content Hiding

Motivated by the increasing existence of mobile workplaces, we introduce our
content hiding solution. Our goal was to allow users to read confidential docu-
ments in the presence of eavesdroppers. HMDs are situated right in front of the
user’s eye and only he is able to see the displayed content. Confidential docu-
ments are printed in an encrypted format and using the HMD an authorized user
decrypts the part he is looking at on-the-fly. Applications using this technique
are not limited to paper-based documents or tablet computers. Consider an un-
trusted machine through which a user might want to access some confidential
data. Using our content hiding technique, he could obtain the information with-
out leaking it to the untrusted machine. For the sake of clarity and brevity, we
describe our technique using public key encryption schemes. In Section 5.3 we
show how to realize more complex access structures, such as security clearance
hierarchies in office spaces, using predicate encryption schemes.

66 M. Simkin et al.

Algorithm 1: Encryption

input : m, ek
output: Header token TokenH and ;

ciphertext tokens Token1, . . . ,Token�

Hf ← GenFrameworkHeader(Hiding);

choose a random key k ← G(1λ);
compute key ← Enc(ek, k);
set TokenH ← Encode(Hf , key);

Compute encoded ciphertext blocks
m1, . . . ,m� ← split(m) ;
for i = 1, . . . , � do

ci ← E(k,mi);
Tokeni ← Encode(i, ci);

return TokenH ,Token1, . . . ,Token�

Fig. 7. The encryption algorithm

Algorithm 2: Decryption

input : TokenH ,Token1, . . . ,Token�, dk
output: message m

Decode the header
(Hf , key) ← Decode(TokenH);

compute k ← Dec(dk, key);

Decrypt the ciphertext
for i = 1, . . . , � do

(i, ci) ← Decode(Tokeni);
mi ← D(k,mi);

return m = m1, . . . ,m�

Fig. 8. The decryption algorithm

5.1 Threat Model

In this scenario we basically consider the adversary from the standard CCA2
security notion. The adversary is allowed to obtain a polynomial amount of
encryptions and decryptions for messages and ciphertexts of his choice from
some honest user Alice. At some point the adversary outputs two messages,
Alice picks one at random, and encrypts it. The adversary wins if he can guess
which message was encrypted with a probability of at least 1

2 + ε(n), where ε is
a non-negligible function and n is the security parameter.

5.2 Our Scheme

Let Πpke = (Gen,Enc,Dec) be a CCA2 secure public key, and Πpriv = (G, E ,D)
a CCA2 secure private key encryption scheme. To obtain public key encryption
scheme with short ciphertexts, we use a hybrid encryption scheme [13]. The basic
idea of such a scheme is to encrypt a randomly generated key k ← G(n) with the
public key encryption scheme and store it in the header. The actual plaintext is
encrypted using Πpriv with k.

Encryption: The encryption algorithm is depicted in Figure 7 and works as
follows: At first, a randomly chosen document key k is encrypted with a public-
key encryption scheme under the public key ek of the recipient. A header QR
code TokenH is created, which contains the framework header, the encrypted
document key. The actual body of the document m is split into message chunks
m1, . . . ,m� and each chunk is encrypted separately using the document key and
is then encoded, along with the block id, into a QR code Tokeni.

Decryption: The decryption algorithm is depicted in Figure 8. Upon receiving
a document, the receiver decodes the header QR code, obtains the encrypted
document key key. Using his secret key dk, the algorithm recovers the document
key k ← D(dk, key) and it uses the key to decrypt the document body.

Bridging the Gap between Digital Cryptography and the Physical World 67

The advantages of representing the document as a sequence of encrypted
blocks is twofold. Firstly, it allows the user to only decrypt the part of the
encrypted document body that he is currently looking at without the need to
scan the whole document first. Furthermore, the encrypted documents are robust
to damage, meaning that even if a part of it is broken or unreadable, we are
still able to decrypt the remaining undamaged ciphertext blocks as long as the
document header is readable. Choosing the size of the message blocks is a trade-
off between space and robustness. The bigger the message blocks are, the more
plaintext is lost once a single QR code is not readable anymore. The smaller
they are, the more QR codes are required, hence the more space is needed to
display them.

Security Analysis. It is well known that using the hybrid argument proof
technique [10] the CCA2 game, where the adversary outputs two distinct mes-
sages in the challenge phase, is equivalent to a CCA2 game where the adversary
outputs two message vectors of polynomial length. The security of our scheme
directly follows from this observation.

5.3 Extending Content Hiding to Support Fine-Grained Access
Control

Using public-key encryption in our content hiding scheme allows us to encrypt
documents for certain recipients. In companies or organizations, however, it is
more desirable to encrypt documents, such that only employees with certain
security clearances can read certain enrypted documents. Ubic allows to encrypt
documents, such that only users with certain security clearances can read them.
Therefore, we replace the public-key encryption scheme by a predicate encryption
scheme [14]. Loosely speaking, in a predicate encryption scheme, one can encrypt
a message M under a certain attribute I ∈ Σ using a master public key mpk
where Σ is the universe of all possible attributes. The encryption algorithm
outputs a ciphertext that can be decrypted with a secret key skf associated
with a predicate f ∈ F , if and only if I fulfills f , i.e., f(I) = 1, where F is the
universe of all predicates.

Next, we explain the security notion of predicate encryption, called attribute-
hiding, with the following toy example. Consider the scenario where professors,
students, and employees are working at a university and by Prof , Emp, and
Stud we denote the corresponding attributes. Every member of a group will be
equipped with a secret key sk f such that f is either the predicate mayAccProf,
mayAccEmp, or mayAccStud. We use the toy policy that professors may read
everything and employees and students may only read encryptions created using
Emp and Stud, respectively. Now, attribute-hiding states that a file file which is
encrypted using the attribute Prof , can not be decrypted by a student equipped
with skmayAccStud and the student also can not tell with which attribute file
was encrypted (except for the fact that it was not Stud). Furthermore, even a
professor does not learn under which attribute file was encrypted, she only learns
the content of the file and nothing more.

68 M. Simkin et al.

scanning
header

request block scan block feedback validation

Fig. 9. Interaction cycle with VeriDoc. The user initiates the interaction by scanning
the header QR code at the top of the document. After sequential scanning of each
content block, the user is informed if the document was verified or not. The black
screens are what the user sees on the Google Glass display. They cover the whole
screen but only a small part of the users view.

Extending Our Scheme. We extend our scheme to also support fine grained
access control by replacing the public-key encryption scheme with a predicate
encryption scheme. Thus, the user encrypting the message in addition chooses
an attribute I ∈ Σ that specifies which users can decrypt the message. Formally,
our encryption algorithm is almost the same as described in Figure 7, but the
public-key encryption step is replaced with c ← PrEnc(mpk , I, k), where mpk
is a master public key that works for all attributes. The only difference in the
decryption algorithm is that instead of using the public-key decryption algorithm
Dec, we are now running the decryption algorithm of the predicate encryption
scheme PrDec(sk f , c) and the user can only decrypt if f(I) = 1.

Efficient Implementation. Our implementation is based on the predicate en-
cryption scheme due to Katz, Sahai, and Waters [14] (see Section A for a formal
description of the scheme). However, for efficiency reasons, we did not implement
the scheme in composite order groups, but adapted the transformation to prime
order groups as suggested by Freeman [15].

6 The VeriDoc Interface

In the following, we describe our document format VeriDoc. A high-level overview
of the document scanning process is shown in Figure 9. Throughout this process
we provide visual feedback to make the scanning process transparent to the user.
As already described, the user initiates the document verification by scanning
the header code of the document. Amongs other information, the header code
contains the layout information. This information contains additional informa-
tion about the document that facilitates the scanning process. In particular, this
information contains the used font, the aspect ratio of each message block, and
the document language. After scanning the header code, the user is asked to
scan the message blocks. We display brackets on the HMD to help the user to
position the camera properly over the text block Accurate alignment and con-
tent extraction is further facilitated by a computer vision subsystem as described
below. After each scanned block, its content is extracted and verified against the

Bridging the Gap between Digital Cryptography and the Physical World 69

user input corner detection
unwarping

content
extraction

Fig. 10. Vision subsystem to assist the user in working with VeriDoc: The user points
the front-facing camera roughly at the VeriDoc document, the system detects the four
corners of the first content block and snaps the locations of the brackets to them, and
the system unwarps and extracts the content of that block.

signature encoded in the QR code. The user is informed about the validity of
each text block and once all blocks of a given document are scanned the system
informs the user if the document, as a whole, was successfully verified.

Alignment and Content Extraction: To assist the user in scanning Veri-
Doc document content we provide a refinement procedure that allows the user
to roughly indicate relevant text blocks, but still provide the required accuracy
for the computer vision processing pipeline (see Figure 10). On the very left, a
typical user interaction is depicted showing a coarse alignment of the brackets
with the first text block. We proceed by a corner detection algorithm and snap
the locations of the brackets provided by the user to the closest corners. We use
the Harris corner measure M to robustly detect corners [16]:

A = g(σI) ∗
(

I2
x(σD) IxIy(σD)

IxIy(σD) I2
y (σD)

)
(1)

M = det(A)− κ trace(A)2 (2)

where Ix and Iy are the spatial image derivatives in x and y direction, σD

smoothing of the image with the detection scale and σI smoothing the response
with the integration scale and κ = 0.04 according to best practice. Intuitively,
the pre-smoothing with σD eliminates noise and allows detection of corners at a
desired scale [17] while the smoothing σI suppresses local maxima in the response
function. In order to be robust to the choice of these scales, we employ the multi-
scale harris detector that finds corners across multiple scales [18].

The second image at the top shows a visualization of the closest corner and the
box spanned by them in green. Under the assumption of a pinhole camera model
as well as a planar target (documents in our case), we can compute a homography
H ∈ R

3×3 in order to undo the perspective transformation under which the
content is viewed. The matrix H relates the points under the perspective project
p′ to the points under an orthogonal viewing angle p by

p′ = Hp (3)

70 M. Simkin et al.

where p, p′ ∈ R
3 are given in homogeneous coordinates. As our interface has

determined the 4 corners that each specify a pair of p and p′, we have sufficient
information to estimate matrix H .

The third image from the left in Figure 10 shows the content after unwarping
and cropping. Using the information on the ratio between text and code con-
tained in the header, we now split the content area into text and the associated
QR code. In a last step, the QR code is decoded, the signature extracted, and
the text area is further processed using OCR in combination with the font and
language information from the header code.

7 Prototype Implementation

We provide a prototype implementation, written in Java, of our Ubic framework
on the Google Glass device. The device runs Android 4.0.4 as its underlying
operating system, features a 640×360 optical head-mounted display as well as an
egocentric camera with a resolution of 1280×720 pixels. Our current developer
version only features an embedded microcontroller with 1.2 GHz and 1GB of
memory.

We used the Bouncy Castle Crypto API 1.50 [19] and the Java Pairing-Based
Cryptography Library 2.0.0 (JPBC) [20] to implement all required cryptographic
primitives. In particular, we used SHA-1 as our collision-resistant hash function,
SHA1+RSA-PSS as our signature, AES-256 in CTR-Mode as our private-key
encryption, and RSA-OAEP with 2048 bit long keys as our public-key encryption
scheme. For our predicate encryption scheme, we use a MNT curve [21] with a
security parameter of 112 according to the NIST recommendations [22]. For
the computer vision part of our framework, we used the OpenCV 2.4.8 image
processing library [23], and QR codes are being processed with the barcode image
processing library zxing 1.7.6 [24]. For optical character recognition, we used the
Tesseract OCR engine [25].

8 Related Work

Head-mounted displays, such as Google Glass, have raised strong privacy con-
cerns in the past and recent publications [26,27,28] have tried to address these
issues. In [26], the authors suggest that operating systems should provide high-
level abstractions for accessing perceptual data. Following this line of work, [27]
proposes a system, which makes a first step towards providing privacy guarantees
for sensor feeds. There, applications access the camera through a new interface
rather than accessing the camera directly. Depending on the application’s per-
missions, the camera is pre-processed with different sets of image filters, which
aim to filter sensitive information. In [28], the notion of recognizers is intro-
duced. Rather than passing a filtered sensor feed to the requesting application,
they provide a set of recognizers that fulfil the most common tasks, such as
face detection or recognition. Applications obtain permissions for certain recog-
nizer and can request the output of certain computations on the sensor feed. In
contrast to our work, this line of research regards the device as a threat.

Bridging the Gap between Digital Cryptography and the Physical World 71

Another line of research concentrates on establishing trust between devices
based on the visual channel [29,30,31]. In [31], for instance, the visual channel
is used for demonstrative authentication, where two devices authenticate them-
selves towards each other by basing their trust on the visual channel between
them. One possible application for this authentication mechanism is access points
with QR codes printed onto them. The user scans the QR code to authenticate
the access point.

In [32], a survey of different techniques for scanning and analyzing documents
with the help of cameras, cell phones, and wearable computers is provided. The
survey shows that even though constant progress is made, current methods are
not robust enough for real world deployment. Ubic tackles this problem in a dif-
ferent way by facilitating the task of scanning documents by encoding additional
information into them.

9 Conclusion

We presented Ubic, a framework that makes an important step towards a tighter
integration of digital cryptography in real-world applications. Using HMDs in
combination with established cryptographic primitives and resource friendly
computer vision techniques, we provide users with more security and privacy
guarantees in a wide range of common real-world applications. We present user-
friendly, easy-to-use solutions for authentication, content verification, content
hiding, that can seamlessly be integrated into the current infrastructure. We
hope that our work will stimulate further research investigating the possibilities
of combining ubiquitous computing technologies with cryptographic primitives
in a user-friendly fashion.

Acknowledgements. Andreas Bulling and Mario Fritz are supported by a
Google Glass Research Award. Work of Dominique Schröder and Mark Simkin
was supported by the German Federal Ministry of Education and Research
(BMBF) through funding for the Center for IT-Security, Privacy, and Account-
ability (CISPA; see www.cispa-security.org). Dominique Schröder is also sup-
ported by an Intel Early Career Faculty Honor Program Award.

References

1. News, B.: Cash machines raided with infected usb sticks (2013)
2. Bankrate: Skimming the cash out of your account (2002)
3. Times, N.Y.: Target missed signs of a data breach (2014)
4. Telegraph, T.: Mind how you move that chair - it’s hot hot-desking is a growing

trend, bringing a new culture writes violet johnstone (2002)
5. House, T.W.: Bring your own device (2012)
6. for Visual Data Security, E.A.: Visual Security White Paper (2012)
7. Kumar, M., Garfinkel, T., Boneh, D., Winograd, T.: Reducing shoulder-surfing by

using gaze-based password entry. In: Proceedings of the 3rd Symposium on Usable
Privacy and Security, SOUPS 2007, pp. 13–19. ACM (2007)

72 M. Simkin et al.

8. International Organization for Standardization: Information technology — auto-
matic identification and data capture techniques — qr code 2005 bar code symbol-
ogy specification (2006)

9. Wicker, S.B.: Reed-Solomon Codes and Their Applications. IEEE Press, Piscat-
away (1994)

10. Katz, J., Lindell, Y.: Introduction to Modern Cryptography (Chapman & Hall/Crc
Cryptography and Network Security Series). Chapman & Hall/CRC (2007)

11. Marforio, C., Karapanos, N., Soriente, C., Kostiainen, K., Capkun, S.: Smartphones
as practical and secure location verification tokens for payments. In: Proceedings
of the Network and Distributed System Security Symposium, NDSS 2014 (2014)

12. Van Rijswijk, R.M., Van Dijk, J.: Tiqr: A novel take on two-factor authentication.
In: Proceedings of the 25th International Conference on Large Installation System
Administration, LISA 2011, p. 7. USENIX Association (2011)

13. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM J. Comput. 33(1),
167–226 (2004)

14. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. In: Smart, N.P. (ed.) EUROCRYPT 2008.
LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008)

15. Freeman, D.M.: Converting pairing-based cryptosystems from composite-order
groups to prime-order groups. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 44–61. Springer, Heidelberg (2010)

16. Harris, C., Stephens, M.: A combined corner and edge detector. In: Proceedings of
the 4th Alvey Vision Conference, pp. 147–151 (1988)

17. Lindeberg, T.: Scale-Space Theory in Computer Vision. Kluwer Academic Pub-
lishers, Norwell (1994)

18. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE
Transactions on Pattern Analysis and Machine Intelligence 27(10), 1615–1630
(2005)

19. The Legion of the Bouncy Castle: Lightweight Cryptography API (Release 1.50)
20. De Caro, A., Iovino, V.: jpbc: Java pairing based cryptography. In: Proceedings

of the 16th IEEE Symposium on Computers and Communications, ISCC 2011,
Kerkyra, Corfu, Greece, June 28-July 1, pp. 850–855 (2011)

21. Miyaji, A., Nakabayashi, M., Takano, S.: New explicit conditions of elliptic curve
traces for fr-reduction (2001)

22. Barker, E., Barker, W., Burr, W., Polk, W., Smid, M.: Recommendation for Key
Management Part 1: General (Revision 3). Technical report (July 2012)

23. Bradski, G.: Open source computer vision library (opencv) (2000)
24. ZXing: ZXing Multi-format 1D/2D barcode image processing library (2012)
25. Smith, R.: An overview of the tesseract ocr engine. In: Proceedings of the Ninth

International Conference on Document Analysis and Recognition, ICDAR 2007,
vol. 2, pp. 629–633. IEEE Computer Society, Washington, DC (2007)

26. D’Antoni, L., Dunn, A., Jana, S., Kohno, T., Livshits, B., Molnar, D., Moshchuk,
A., Ofek, E., Roesner, F., Saponas, S., Veanes, M., Wang, H.J.: Operating system
support for augmented reality applications. In: Proceedings of the 14th USENIX
Conference on Hot Topics in Operating Systems, HotOS 2013, p. 21. USENIX
Association, Berkeley (2013)

27. Jana, S., Narayanan, A., Shmatikov, V.: A scanner darkly: Protecting user privacy
from perceptual applications. In: IEEE Symposium on Security and Privacy, pp.
349–363. IEEE Computer Society (2013)

Bridging the Gap between Digital Cryptography and the Physical World 73

28. Jana, S., Molnar, D., Moshchuk, A., Dunn, A., Livshits, B., Wang, H.J., Ofek, E.:
Enabling Fine-Grained Permissions for Augmented Reality Applications With Rec-
ognizers. In: 22nd USENIX Security Symposium (USENIX Security 2013), Wash-
ington DC (August 2013)

29. Starnberger, G., Froihofer, L., Goeschka, K.M.: Qr-tan: Secure mobile transaction
authentication. In: 2012 Seventh International Conference on Availability, Relia-
bility and Security, pp. 578–583 (2009)

30. Saxena, N., Ekberg, J.E., Kostiainen, K., Asokan, N.: Secure device pairing based
on a visual channel. In: 2006 IEEE Symposium on Security and Privacy, pp. 306–
313 (2006)

31. Mccune, J.M., Perrig, A., Reiter, M.K.: Seeing-is-believing: Using camera phones
for human-verifiable authentication. In: IEEE Symposium on Security and Privacy,
pp. 110–124 (2005)

32. Liang, J., Doermann, D., Li, H.: Camera-based analysis of text and documents: a
survey. International Journal on Document Analysis and Recognition 7, 84–104–
104 (2005)

A Predicate Encryption

For completeness, we recall the predicate encryption scheme due to Katz, Sahai,
and Waters [14].

Definition 1 (Predicate Encryption). A predicate encryption scheme for
the universe of predicates and attributes F and Σ, respectively, is a tuple of
efficient algorithms ΠPE = (PrGen,PrKGen,PrEnc,PrDec), where the generation
algorithm PrGen takes as input a security parameter 1λ and returns a master
public and a master secret key pair (mpk , psk); the key generation algorithm
PrKGen takes as input the master secret key psk and a predicate description
f ∈ F and returns a secret key skf associated with f ; the encryption algorithm
PrEnc takes as input the master public key mpk, an attribute I ∈ Σ, and a
message m and it returns a ciphertext c; and the decryption algorithm PrDec
takes as input a secret key skf associated with a predicate f and a ciphertext c
and outputs either a message m or ⊥.

A predicate encryption scheme ΠPE is correct if and only if, for all λ,
all key pairs (mpk , psk) ← PrGen(1λ), all predicates f ∈ F , all secret keys
skf ← PrKGen(psk , f), and all attributes I ∈ Σ we have that (i) if f(I) = 1
then PrDec(sk f ,PrEnc(mpk , I,m)) = m and (ii) if f(I) = 0 then PrDec(sk f ,
PrEnc(mpk , I, m)) = ⊥ except with negligible probability.

The KSW Predicate Encryption Scheme. The scheme is based on composite
order groups with a bilinear map. More precisely, let N = pqr be a composite
number where p, q, and r are large prime numbers. Let G be an order-N cyclic
group and e : G × G → GT be a bilinear map. Recall that e is bilinear, i.e.,
e(ga, gb) = e(g, g)ab, and non-degenerate, i.e., if 〈g〉 = G then e(g, g) 	= 1. Then,
by the chinese remainder theorem, G = Gp×Gq×Gr where Gs with s ∈ {p, q, r}
are the s-order subgroups of G. Moreover, given a generator g for G, 〈gpq〉 = Gr,

74 M. Simkin et al.

〈gpr〉 = Gq, and 〈gqr〉 = Gp. Another insight is the following, given for instance
a ∈ Gp and b ∈ Gq, we have e(a, b) = e((gqr)c, (gpr)d) = e(grc, gd)pqr = 1, i.e.,
a pairing of elements from different subgroups cancels out. Finally, let G be an
algorithm that takes as input a security parameter 1λ and outputs a description
(p, q, r,G,GT , e). We describe the algorithms PrGen, PrKGen, PrEnc, and PrDec
in the sequel.

Algorithm PoGen(1λ, n) and PrGen(1λ, n). First, the algorithm runs G(1λ) to
obtain (p, q, r,G,GT , e) with G = Gp × Gq × Gr. Then, it computes gp, gq,
and gr as generators of Gp, Gq, and Gr, respectively. The algorithm selects
R0 ∈ Gr, R1.i, R2,i ∈ Gr and h1,i, h2,i ∈ Gp uniformly at random for 1 ≤ i ≤ n.
(N = pqr,G,GT , e) constitutes the public parameters. The public key for the
predicate-only encryption scheme is

opk = (gp, gr, Q = gq ·R0, {H1,i = h1,i ·R1,i, H2,i = h2,i ·R2,i}ni=1)

and the master secret key is osk = (p, q, r, gq, {h1,i, h2,i}ni=1). For the predicate
encryption with messages, the algorithm additionally chooses γ ∈ ZN and h ∈ Gp

at random. The public key is

mpk = (gp, gr, Q = gq · R0, P = e(gp, h)
γ , {H1,i = h1,i · R1,i, H2,i = h2,i · R2,i}ni=1)

and the master secret key is psk = (p, q, r, gq, h
−γ , {h1,i, h2,i}ni=1).

Algorithm PoKGen(osk ,
v) and PrKGen(psk ,
v). Parse
v as (v1, . . . , vn) where
vi ∈ ZN . The algorithm picks random r1,i, r2,i ∈ Zp for 1 ≤ i ≤ n, random
R5 ∈ Gr, random f1, f2 ∈ Zq, and random Q6 ∈ Gq. For the predicate-only
encryption scheme, it outputs a secret key

osk�v =

⎛
⎝ K0 = R5 ·Q6 ·

∏n
i=1 h

−r1,i
1,i · h−r2,i

2,i ,

{K1,i = g
r1,i
p · gf1·viq ,K2,i = g

r2,i
p · gf2·viq }ni=1

⎞
⎠ .

For the predicate encryption scheme with messages, the secret key sk�v is the
same as osk�v except for

K0 = R5 ·Q6 · h−γ ·
n∏

i=1

h
−r1,i
1,i · h−r2,i

2,i .

Algorithm PoEnc(opk ,
x) and PrEnc(mpk ,
x,m). Parse
x as (x1, . . . , xn) where
xi ∈ ZN . The algorithm picks random s, α, β ∈ ZN and random R3,i, R4,i ∈ Gr

for 1 ≤ i ≤ n. For the predicate-only encryption scheme, it outputs the ciphertext

C =

⎛
⎝C0 = gsp, {C1,i = Hs

1,i ·Qα·xi ·R3,i,

C2,i = Hs
2,i ·Qβ·xi · R4,i}ni=0

⎞
⎠ .

Bridging the Gap between Digital Cryptography and the Physical World 75

For the predicate encryption scheme with messages notice that m ∈ GT . The
ciphertext is

C =

⎛
⎜⎜⎜⎝

C′ = m · P s, C0 = gsp,

{C1,i = Hs
1,i ·Qα·xi ·R3,i,

C2,i = Hs
2,i ·Qβ·xi · R4,i}ni=0

⎞
⎟⎟⎟⎠ .

Algorithm PoDec(osk�v, C) and PrDec(sk�v, C). The predicate-only encryption
outputs whether the following equation is equal to 1

e(C0,K0) ·
n∏

i=1

e(C1,i,K1,i) · e(C2,i,K2,i).

The predicate encryption scheme with messages outputs the result of the follow-
ing equation

C′ · e(C0,K0) ·
n∏

i=1

e(C1,i,K1,i) · e(C2,i,K2,i).

	Ubic: Bridging the Gap between DigitalCryptography and the Physical World
	1 Introduction
	1.1 Contributions
	1.2 Smartphones vs. Head-Mounted Displays

	2 The Ubic Framework
	3 Authentication
	3.1 Threat Model
	3.2 Our Scheme

	4 ContentVerification
	4.1 Threat Model
	4.2 Our Scheme
	4.3 Two-Step Verification

	5 Content Hiding
	5.1 Threat Model
	5.2 Our Scheme
	5.3 Extending Content Hiding to Support Fine-Grained Access Control

	6 The VeriDoc Interface
	7 Prototype Implementation
	8 Related Work
	9 Conclusion
	References

