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Figure 1: (a): image from the eye tracker. (b) and (c): calibration routine at different time steps. (d) combined results of the visual field
calibration based on the screen center. The white dots represent the maximal outer points of the visual field while the user is looking at the
screen center. The yellow dots are the maximal outer points of the visual field when the user is directing his eye gaze at the corresponding
yellow dot. When looking at one of these yellow dots, the user cannot see the area beyond it.

Abstract
With increasing spatial and temporal resolution in head-mounted
displays (HMDs), using eye trackers to adapt rendering to the user is
getting important to handle the rendering workload. Besides using
methods like foveated rendering, we propose to use the current
visual field for rendering, depending on the eye gaze. We use two
effects for performance optimizations. First, we noticed a lens defect
in HMDs, where depending on the distance of the eye gaze to the
center, certain parts of the screen towards the edges are not visible
anymore. Second, if the user looks up, he cannot see the lower parts
of the screen anymore. For the invisible areas, we propose to skip
rendering and to reuse the pixels colors from the previous frame. We
provide a calibration routine to measure these two effects. We apply
the current visual field to a renderer and get up to 2× speed-ups.
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1 Introduction
Virtual reality HMDs are becoming popular in the consumer space.
To increase the immersion further, higher screen resolutions are
needed. Even with expected progress in future GPUs, it is challeng-
ing to render in real-time at the desired 16K HMD retina resolution1.
To achieve this, the HMD screen should not be treated as a regular
2D screen where each pixels is rendered at the same quality. Eye
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tracking in HMDs gives several hints of the user’s perception which
can be used to reduce the work load. In this work, we propose to use
the current visual field, depending on the eye gaze, to skip rendering
to certain areas of the screen.

2 Related Work
[Tong and Fisher 1984] built a flight simulator with a projection
system on a dome. Depending on the head orientation of the user,
they mixed together a low quality image for the whole dome with a
high quality image at the gaze of the user. [Guenter et al. 2012] used
an eye tracker in a setup with multiple monitors and adjusted the
quality depending on the tracked eye gaze. Eye tracking in HMDs
was demonstrated by [Duchowski et al. 2001]. Using cheap compo-
nents, students added eye tracking to modern consumer HMDs [Sten-
gel et al. 2015]. [Pohl et al. 2016] combined foveated rendering
in HMDs with rendering optimizations towards lens astigmatism.
Compared to their work, we account for the current visual field of
the user, depending on the eye gaze.

3 Visual Field Specific Rendering
To find the visual field, we developed a calibration routine using
the Pupil Labs [Kassner et al. 2014] eye tracker (example image
in Figure 1 (a)) in the Oculus Rift DK2, consisting of two steps.
First, the user always looks at the center point inside the HMD.
Meanwhile, another blinking dot moves smoothly from the center
towards the outer area of the screen (Figure 1 (b) and (c)). The user
keeps looking at the center and will press a key once the moving dot
is not visible anymore within the user’s field of view while wearing
the HMD. We repeat this procedure for different angles like on a
clock, e.g. the first time the dot moved from the center straight up to
the screen, in the second run, the dot moves from the center towards
the position of one o’clock and so on. Based on the experience
from our experiments, we suggest using between 12 and 20 of these
tests for a reasonable sampling result of the user’s visual field when
looking at the center. In the second step of the calibration routine,
the user always follows the moving point and presses a key once it
is invisible. An exemplary result can be seen in Figure 1 (d), where
the white dots are the stored positions of the moving dots when the
user was looking in the center and was not able to see them anymore.
The yellow dots are the positions of the dots the user followed with
his eyes during the movement, until they were not visible anymore.
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From this image, we conclude that when the user is looking at the
center, he can see more area than when directly looking into these
outer areas, which is a lens defect in the Oculus Rift DK2 and other
HMDs.

This leads to the first part for our rendering optimizations depending
on the current visual field. We lay curves between the individual
sampling points from Figure 1 (d), roughly approximating an ellip-
soid. This is shown in Figure 2 (left). If the user looks at a point at
the yellow ellipsoid, we know that at least the area beyond it cannot
be seen anymore from that eye gaze. For an exemplary eye gaze in
Figure 2 (right), we hatched that invisible area in the image, which
is about 10%. We skip rendering that area and leave the pixels from
the previous frame there to avoid larger illumination changes, which
might be perceived through internal reflections inside the HMD.
In more detail, in a ray traced renderer, no primary rays would be
shot for these pixels. In a rasterization setup, these pixels would be
stenciled out. The same can be applied if the eye gaze is even further
beyond the yellow ellipsoid.

       x
eye gaze

            x
eye gaze

Figure 2: Left: added curves through the results of the visual field
calibration. Center: with an eye gaze at the marked blue cross,
at least the hatched area will not be visible anymore. Right: the
hatched area can be skipped for rendering.

The second part of the rendering optimizations is to adjust the op-
posite side of the current eye gaze, e.g. if someone is looking up,
he cannot see the full area on the screen below. To calibrate this,
another routine is used where instead of the screen center, the start-
ing point for the moving dots would be placed at one of the yellow
points in Figure 3 (left) and repeated for all other yellow points.
From the new center, we smoothly move again a blinking dot into
various directions (Figure 3 center and right) and the user has to
press a key, when it becomes invisible.

Figure 3: Left: Selecting one of the previously determined yellow
points as the new center for the second calibration step. Center and
right: second calibration routine with the new center at different
time steps.
After the result of this calibration step (Figure 4 left), we lay in
curves (Figure 4 center) across the data points. We use the inner
area of that shape as the user’s visual field for that specific eye gaze
and can skip a large amount of screen area for rendering as shown
in Figure 4 (right).

In our test case, 57% of the pixels are marked invisible with the
selected sampling point. We apply that mask of the visual field to a
self-written ray tracer, running on a Dual-CPU (Intel Xeon E5-2699
v3), 1920 × 1080 pixels workstation with the Oculus Rift DK2,
rendering a game scene from Enemy Territory: Quake Wars. The
performance of rendering the full image with 2× supersampling is
26 fps. When we use the mask, the performance increases to 55 fps,
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Figure 4: Left: results of the calibration with the eye gaze in the
blue marked upper right corner. Center: added curves through the
data points. Right: the hatched area can be skipped for rendering.

showing a close-to-linear scaling of performance with the number
of pixels rendered.

The more sample points are taken as center and calibration routines
are run with it, the more accurate model can be determined for all
eye gazes for a certain user inside a specific HMD. One calibration
procedure with one center and 20 directions for the moving dots
takes about one to two minutes to complete. As this can be quite
time-consuming with many sample points, we suggest for future
work to provide a detailed user study and to develop a generic model
for a specific HMD which works well for most users with an optional
calibration for fine tuning. Our technique could also be combined
with traditional foveated rendering and optimizations towards the
lens astigmatism as described in Section 2.

4 Conclusion
We have shown how to calibrate the current visual field inside an
HMD. Through occurring lens defects and limitations of the human
visual system, certain areas for rendering can be skipped depending
on the current visual field to enable faster frame rates.
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