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Abstract

Visual working memory (VWM) plays a fundamental role in
cognitive processes, such as perception, attention, and reason-
ing. However, existing approaches to modelling VWM are not
integrated into cognitive architectures and lack interpretability
with respect to their parameters. To address this limitation, we
propose a novel VWM model based on the well-established
Semantic Pointer Architecture (SPA). In contrast to previous
works, our model is the first to integrate a VWM model with a
cognitive attention model. It only requires three interpretable
hyper-parameters: spatial capacity, feature certainty, and mem-
ory decay. We experimentally show that our base model with-
out memory decay replicates the set-size effect and swap er-
rors of human data on a continuous reproduction task. More
importantly, we show that by introducing a memory decay, we
can achieve a statistically significant (p→ 0.001) improvement
in model fit, suggesting a potentially important role of mem-
ory decay in VWM. Further, our VWM model can be easily
extended to model pre- and post-cue conditions, consistently
achieving KL divergence between modelled and human per-
formance of less than 0.05.
Keywords: visual working memory, vector symbolic algebra,
spatial semantic pointer, colour reproduction task

Introduction

Working memory functions as a cognitive workspace, main-
taining representations essential for reasoning about tempo-
rally relevant stimuli, context, and actions (Chai, Abd Hamid,
& Abdullah, 2018). Visual working memory (VWM) sup-
ports the processing of visual information and requires a
computational model capable of accounting for observed be-
havioural phenomena. To enable future integration into cog-
nitive models, a VWM model should be embedded within a
comprehensive cognitive modelling framework. Ultimately,
such a model should also be translatable into spiking neural
networks to explain human neural data.

In this paper, we present a VWM model based on the well-
established Semantic Pointer Architecture (SPA; Eliasmith,
2013), effectively integrating a VWM model into a cogni-
tive architecture. The SPA employs Spatial Semantic Point-
ers (SSPs; Komer, Stewart, Voelker, & Eliasmith, 2019; Du-
mont & Eliasmith, 2020), which are embeddings of contin-
uous variables that together with algebraic statements from
Plate’s Holographic Reduced Representations (HRR; Plate,
2003) form a closed algebra. This framework enables a full
translation into spiking neural networks in the future (e.g.

Eliasmith et al. (2012); Komer et al. (2019)). We evaluate our
VWM model on a continuous colour reproduction task with

experimental data collected by Oberauer & Lin (2017) and
achieve a good model fit for different variants of our model.
Our model is similar to previous SPA-based working mem-
ory models (Choo & Eliasmith, 2010; Gosmann & Eliasmith,
2015) but indexes memory contents using continuous spatial
locations instead of discrete integer slots.
Early Models of VWM. Early methods modelled VWM as
a fixed number of slots, with a capacity of about four ob-
jects (e.g., Luck & Vogel, 1997). Luck & Vogel (1997) also
found that these objects stored conjunctions of features, or
bound representations. Alvarez & Cavanagh (2004) pro-
posed that the allocation of fixed resources best described
VWM, and that information-dense visual stimuli overload
the capacity of VWM, a view supported by Bays & Hu-
sain (2008). Zhang & Luck (2008) fused these two methods
into a “Slot-Averaging” model, improving the results. The
Variable-Precision (VP) model of van den Berg, Shin, Chou,
George, & Ma (2012), proposed that working memory allo-
cates resources in a way that varies around an average and
that is itself a function of the number of objects in memory.
The VP model includes the limited resource model by Bays
& Husain (2008) as a special case.
Distributional Models. Instead of modelling objects as
occupying slots, Signal Detection Theory (SDT; Verghese,
2001) posits each stimulus is encoded by a corresponding
noisy channel – cortical representations of continuous em-
beddings of stimuli. Wilken & Ma (2004) proposed that it is
the presence of noisy signals and not the absence of resources
that leads (probabilistically) to the misidentification of targets
and replicated capacity observations in VWM. This method is
compatible with our approach, where our distributed embed-
dings of stimuli can be understood probabilistically (Furlong
& Eliasmith, 2023). To address the question of storing con-
junctions of features, Schneegans & Bays (2017) presented a
model of VWM that binds location with visual characteris-
tics of presented stimuli. Their method of implementing con-
junctive coding is reminiscent of the Dynamic Neural Fields
theory (Schöner & Spencer, 2016) approach to neural popula-
tion encoding. Likewise, our binding operation between dis-
tributed representations can be implemented neurally (Komer
et al., 2019), i.e., it can support conjunctive coding as well.
Interference Model. Oberauer & Lin (2017) proposed the
interference model (IM), which explicitly defines a bivariate
feature and context distribution, creating a two-dimensional
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Figure 1: Colour reproduction task – the stimulus consists of differently coloured squares (a), where the highlighted location in
the test screen (b) is probed for selection on the colour wheel; (c) shows an example scan path as predicted by EMMA.

binding space. Oberauer & Lin (2017) provided human re-
sponses on the continuous colour reproduction task, intro-
duced by Wilken & Ma (2004), with additional experiments
including pre- and post-cues. The IM was able to capture
the set size effect, where human error increases with increas-
ing set size. The IM also fitted the distribution of non-target
responses, which indicates the occurrence of swap errors in
VWM, while both the Slot-Averaging (Zhang & Luck, 2008)
and VP model (Bays & Husain, 2008) did not.

Our proposed VWM model is similar to the IM and other
models, as it also binds the context domain and feature do-
main of objects. However, we do not define specific distribu-
tions, and our model requires fewer hyper-parameters, which
are also more interpretable. In the following, we present our
model with additional variants and evaluate them on the three
experiments used by Oberauer & Lin (2017). We find that
our model captures the set size effect, as well as swap errors.
Most interestingly, we find that a memory decay parameter
significantly increases model fit to human performance, indi-
cating its importance in modelling VWM.

Method

We constructed our models using a Vector Symbolic Al-
gebra (VSA; Gayler, 2004). VSAs are dimensionality-
preserving algebras over high-dimensional vectors that rep-
resent structured data in a distributed manner. The VSA we
use here comes with four main operators: similarity (! ·∀),
which is used to compare two vectors; bundling (! + ∀),
which is used to create the superposition of two vectors; bind-

ing (! ↑ ∀), which creates a new vector that represents a
conjunction of two vectors; inverse (!↓1), which creates a
new vector that is an approximate multiplicative inverse, i.e.,
!↑∀↑!↓1 ↔ ∀. Following work on Spatial Semantic Point-
ers (SSP; Komer et al., 2019), we used this VSA to embed
continuous-valued data by defining:

!#(x) = F ↓1
{

eiA#↓1
x

}
.

where x ↗ Rm is the embedded data, A ↗ Rd↘m is the phase

matrix, # is the length scale parameter, the exponentiation
is applied element-wise to A#↓1

x, and F ↓1 is the inverse

Fourier transform. We used Plate’s Holographic Reduced
Representations (HRR) (Plate, 2003) that uses circular con-
volution ↭ for binding, vector addition for bundling, and the
vector dot product for similarity. Previous work showed that
these vector embeddings of data admit a probabilistic inter-
pretation (Furlong & Eliasmith, 2023), which can support
uncertainty representations found in other working memory
models (Bays, Schneegans, Ma, & Brady, 2024).

To build a representation of a given visual stimulus, we
encoded all stimuli in the scene sequentially. We encoded
a single object by binding its feature (colour) !#c

(c) to its
spatial location !#g

(x,y), which can also represent a vector of
multiple locations. The full scene was then encoded as:

M = ∃
i

%(i) ·
[
!#c

(ci)↭!#g
(xi,yi)

]
, (1)

where % is an adjustable encoding factor based on the decay
parameter &. This approach can be interpreted as using a slot-
filling representation with continuous slots. The model’s ca-
pacity is controlled by the degree of smoothing between con-
tinuous values, i.e., scale factors on the arguments ci,xi, and
yi that affect the respective feature and spatial certainty.

Feature Certainty. In our model, the feature certainty is
modelled by the length scale parameter #c. While we en-
code colour on a colour circle, i.e., in 360 degrees, #c ↗
[0.5 · 180

∋ ,2.5 · 180
∋ ] effectively scales colour to radians and

achieves smooth transitions between neighbouring colours.
Increasing #c corresponds to a higher uncertainty in the fea-
ture dimension (see Figure 4). In other words, colours are
more easily misremembered for adjacent colours.

Spatial Certainty. Similarly, the spatial certainty is mod-
elled by the length scale parameter #g for the spatial dimen-
sions x and y. When encoding locations #g affects the encod-
ing resolution, i.e., a higher #g decreases resolution in spa-
tial dimensions, letting neighbouring points be remembered
as one (see Figure 4). Hence, #g models spatial uncertainty
and allows for replicating swap errors between close objects.

Memory Decay. We set the memory decay as %(i) = &i,
with & as an adjustable parameter. In the base model SSP-

base, the decay parameter was & = 1, effectively disabling
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Figure 2: Results of base model: showcasing set-size effect (a), distribution fit of target responses (b), and distribution fit of
centred non-target responses (c).

the memory decay. For the SSP-decay model, we set & < 1
and assign each object a random position i. The last seen
object was at i = 0 and, therefore, received &i = 1 as an en-
coding factor, while previously seen objects i = 1, . . . ,n were
multiplied by an exponentially smaller factor %.

Attention-based Model

To estimate human scan paths, we integrated the cognitive at-
tention module EMMA (Salvucci, 2001) – among the most
popular modules for the ACT-R cognitive architecture (An-
derson, Matessa, & Lebiere, 1997). EMMA takes bounding
box locations of objects as input to predict a human-like scan
path. Scan paths consist of consecutive saccades with a time
of encoding the respective objects in between. The object en-
coding time depends on their frequency fi and the eccentricity
(i, i.e., the distance between the last eye position to the new
object in visual angle, computed as Tenc = K ·↓ log fi · e

k(i .
K is a constant eye movement scale factor, while k is the eye
movement angle parameter. For both, we used the default pa-
rameters in pyactr1.We enabled the centre bias in the EMMA
module, as a centre bias is encouraged in human trials by dis-
playing a central fixation cross (Oberauer & Lin, 2017).

With the EMMA module, we predicted a unique scan path
for each trial and integrated it into our SSP model (SSP-

attend). An example scan path prediction can be seen in
Figure 1 (c). With the predicted order of encoded objects
and their respective timestamps ti, we computed the memory
decay %(i) = &ti/tavg and divided by the maximum %, so that
the last seen object has no decay and previous objects had a
similar exponential decay to the decay model. Hence, in our
experiments, the key difference between SSP-decay and SSP-
attend was the predicted scan paths. For experiments with
more complex objects that require a varying amount of en-
coding time Tenc, the memory decay calculation would differ
more.

1https://github.com/jakdot/pyactr

Memory Decoding

To probe the spatial semantic pointer (SSP) memory M at the
target location (x,y), we used unbinding, i.e., binding with
the approximate inverse M ↭!(x,y)↓1 = ∀. This resulted in
a new SSP ∀ that we compared to a vocabulary of all colours
encoded as SSPs with the similarity operator, yielding a sim-
ilarity distribution across all colours. We converted similarity
to a probability distribution over colour, using Born’s rule,
and then either picked the colour with the maximum similar-
ity to ∀ as our response, i.e., the maximum likelihood pre-
dictor, or we drew a random sample from the distribution.
Drawing a sample from the distribution introduces a predic-
tion error, automatically geared towards predicting non-target
colours. In the following, we present the best results achieved
on both response types for all models.

Hyperparameters

For all models, we performed a hyperparameter search to find
the best combination of length scales #g, #c, and memory
decay &, evaluated with a coarse grid search for the overall
model fit to the human data of Experiment 1. We selected
#g to be between 10 and 500, #c between 30 and 150, which
corresponds to 0.5 to 2.5 in radians, and & from 0.4 to 1.0.
The best parameters for each model, evaluated using KL di-
vergence to the human response distribution, are summarised
in Table 1. We optimised both the base model, where & = 1 is
fixed to disable the memory decay, and the SSP-decay model
with variable &, for both response types. The %cue parameter
is only necessary for experiment two, where we changed the
decay factor for the object in the pre-cue location.

Pre- & Post-cue Conditions

Oberauer & Lin (2017) evaluated the effect of pre- and post-
cues in the continuous colour reproduction task. They found
that the average error decreased for the pre-cue condition
and barely changed for the post-cue condition. We extended
our model to account for pre-cues by adjusting the factor %
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Model Response #g #c & %cue

SSP-base max 390 110 1 2
SSP-base dist 270 60 1 2

SSP-decay max 230 150 0.6 0.67
SSP-decay dist 90 60 0.4 0.67

Table 1: Best hyper-parameters for base and decay models
with maximum and distribution response type.

that multiplies the bound colour and location SSPs. More
specifically, we increased the factor for the cued location to
%(icue) = 2 for the base models, which otherwise had a factor
of %(i) = 1 for all objects i. This effectively added the cued
location into memory twice and, therefore, increased its like-
lihood of being recalled. For the SSP-decay models, we set
%(icue) = 0.67 to match the probability of receiving a valid
cue, where only the last seen object was encoded with % = 1
and all other objects exhibited a strong exponential decay. For
consistency and to highlight the generalisation ability of our
model, we kept all other hyperparameters fixed.

Experimental Design

To directly compare our model with the IM proposed by
Oberauer & Lin (2017), we evaluate our model on the con-
tinuous colour reproduction task as originally described in
Wilken & Ma (2004). In the colour reproduction task, partic-
ipants were asked to memorise up to eight coloured squares
(see Figure 1 (a)). After a blank screen was shown for one
second, they saw the probing screen in Figure 1 (b), where the
target location was marked with a thicker border. The contin-
uous colour wheel was displayed, and participants were asked
to select the colour they remembered from this location.

Oberauer & Lin (2017) collected data on the colour repro-
duction task and observed interesting phenomena: (1) the set
size effect: reproduction error increases with an increasing
number of items, (2) the distribution of non-target items, i.e.,
it is more likely that participants remember a colour of the
non-target items instead of a randomly selected one, which
can also be defined as a function of the distance in both fea-
ture and spatial dimension, and (3) a focus of attention, where
a pre-cue of the probed location significantly increases repro-
duction accuracy.

We used the implementation by Oberauer & Lin (2017) as
they provide human data from 20-21 participants for three
different experiments: In Experiment 1, the set size of the
stimulus was varied from 1-8 with 100 trials per size. In Ex-

periment 2, the colours were slightly altered, and a pre-cue
was presented before the stimuli were shown. In 67% of tri-
als, the pre-cue was valid and indicated the location that was
later probed. Participants were instructed on the possibility of
false pre-cues. Experiment 3 was the same as Experiment 2,
but with post-cues, i.e., the cue appeared after the one-second
blank screen, right before the probing screen.

Results

Figure 2 summarises the results of Experiment 1. All models
replicate the set size effect found in human data (see Figure
2 (a)). Comparing this to Figure 3 in Oberauer & Lin (2017),
we find our model fits the set size effect on par with their
Interference Model (IM). All distribution response models
slightly over-predict the error until set size five. In contrast,
the maximum response model – SSP-decay (max) – generally
under-predicts the error, with almost zero error when the set
size is one, making it more aligned with the human data until
set size five. At this point, the distribution response model
fits better. The best fit of the set size effect can be observed
with the SSP-attend model, which incorporates the attention
model EMMA (Salvucci, 2001). Interestingly, all distribu-
tion response models struggle with correctly predicting the
error for a set size of one. Here, human error may arise from
difficulties in distinguishing or selecting among 360 colours.
We argue that these motor and perceptual factors are hard to
incorporate into our visual memory model.

Following Oberauer & Lin’s analysis, we computed a cen-
tred target response, shifting human and model responses so
that the correct answer was always displayed at zero degrees.
In Figure 2 (b), a histogram of the human responses for Ex-
periment 1 is shown in black, and our models’ density func-
tions, estimated as a von Mises distribution ()= 20), are over-
layed. Similarly, we present the non-target responses in Fig-
ure 2 (c). Here, we compute the centred responses for all
non-targets (up to seven) and find that objects with colours
of non-targets are often recalled erroneously, starting at a set
size of four. The SSP-base (dist) model accurately replicates
the human response distribution for set sizes starting at five.
However, for lower set sizes, it over-predicts the non-target
distribution and, therefore, under-predicts the target distri-
bution. The maximum response decay model – SSP-decay
(max) – best fits the target response distribution but signif-
icantly over-predicts the non-target response. This is likely
due to the high uncertainty in both the spatial dimension gov-
erned by #g and the feature dimension governed by #c, which
were fine-tuned to yield the best possible average KL diver-
gence for this model. The SSP-decay (dist) model still cap-
tures the non-target response effect (Figure 2 (c)) but is more
moderate and correctly predicts a more uniform distribution
for set sizes two and three. The attention-based model SSP-
attend (dist) is very similar to the SSP-decay (dist) model;
however, it has a slightly lower non-target prediction.

Overall, the distribution response models are better regard-
ing KL divergence for both the target and non-target dis-
tributions. We compare results in Table 2 with KL diver-
gence of all models’ target response distribution and non-
target response distribution compared to human data. To min-
imise random effects, we take the average across five random
seeds [0, 1, 2, 3, 4] and report the standard deviation in
brackets. We find that the SSP-decay model performs sig-
nificantly better than the base model for both the maximum
response as well as the distribution response. In fact, an inde-
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Experiment 1 Experiment 2 Experiment 3

Model Response Target Non-target Average Average Average

SSP-base max 0.083 (0.004) 0.048 (0.002) 0.066 (0.002) 0.041 (0.001) 0.044 (0.001)
SSP-base dist 0.064 (0.001) 0.015 (0.001) 0.040 (0.001) 0.035 (0.001) 0.032 (0.001)

SSP-decay max 0.064 (0.004) 0.013 (0.001) 0.039 (0.002) 0.030 (0.003) 0.024 (0.003)
SSP-decay dist 0.045 (0.002) 0.012 (0.001) 0.028 (0.001) 0.031 (0.002) 0.021 (0.001)

SSP-attend max 0.062 (0.007) 0.013 (0.000) 0.037 (0.004) 0.030 (0.003) 0.024 (0.003)
SSP-attend dist 0.044 (0.002) 0.012 (0.001) 0.028 (0.001) 0.031 (0.002) 0.022 (0.001)

Table 2: KL divergence mean (std) for models’ predictions to target and non-target distribution across five random seeds. Bold
numbers indicate the best values, while underlined numbers indicate the second-best.

pendent two-tailed t-test shows a statistically significant dif-
ference (p → 0.001) in both cases. However, the additional
improvement by SSP-attend over the SSP-decay model is not
significant in either case (p ↔ 0.35), as particularly for the
maximum response, we see an increase in standard deviation.

Experiments 2 & 3

In Experiment 2, where pre-cues were presented to partic-
ipants before the stimuli, the overall response mean devi-
ation decreased compared to Experiment 1. Consequently,
the set size effect curve decreased in slope. With our ex-
tended SSP models, we observed the same effect as in Ex-
periment 1, where the maximum response models slightly
under-predicted the mean deviation and the distribution re-
sponse models over-predicted up until set size six, where they
fit perfectly. Interestingly, the maximum response variants of
SSP-decay and SSP-attend were slightly better than the dis-
tribution versions in this experiment (see Table 2).

In Experiment 3, post-cues were used but were found not
to have a significant effect on human response distributions.
Both the set size effect and the swap errors with non-target
responses are observed in the data. Our models capture the
effects without any fine-tuning of hyper-parameters; in fact,
they achieve even lower KL divergence in Experiment 3 than
in the others. This might be due to the fact that in Experiment
2 and 3, only set sizes of 1, 2, 4, 6, and 8 were presented.

Parameter Sensitivity & Interpretation

We evaluated the parameter sensitivity of our three model pa-
rameters on Experiment 1. In Figure 3, we plot the variability
of KL divergence of all parameters compared to the variabil-
ity introduced by random sampling, i.e. the random seeds.
We find that the memory decay & has the most variability. The
length scale parameter #c, which affects feature certainty, also
exhibits some variability, followed by #g, the grid length scale
with the lowest variability. However, all parameters have a
larger effect than the different random seeds.

We further analysed parameter sensitivity by running a lin-
ear regression model predicting the average KL divergence
score based on the given parameters. Overall, the regression
model achieved an R

2 score of 0.74, i.e. explains 74% of

Figure 3: Parameter sensitivity for SSP-decay with distribu-
tion response. Effect of grid length scale #g, colour length
scale #c, memory decay &, and random seeds on average KL
divergence for target and non-target distribution.

the variance. The individual parameters, grid length scale #g,
colour length scale #c, and memory decay &, achieved a R

2

score of 0.011, 0.001, and 0.733, respectively. These results
suggest that the memory decay parameter is the most influ-
ential in correctly modelling human errors in the colour re-
production task. Therefore, we hypothesise that misremem-
bering the colours of previously seen objects is more due to
memory capacity than spatial and feature uncertainty. The
significant improvement of our SSP-decay model compared
to the SSP-base model further supports this hypothesis.

To highlight the interpretability of our hyperparameters,
we show their effect in spatial and feature dimensions. Fig-
ure 4 visualises an example trial of Experiment 1. From left
to right, the hyperparameters match the optimised parameters
for the base models and the decay models with both response
types; however, we set & = 1 for visualisation purposes. On
the top (a), we see the effect of the grid length scale parameter
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trial 

Figure 4: Parameter visualization. In (a), we see the effect of different length scales in the spatial dimension #g, and in (b), the
effect of different colour length scales #c on the decoding of the probed object (yellow).

#g. Here we probe all given colours via unbinding and over-
lay the resulting spatial similarity maps (brighter colours indi-
cate higher similarity). A large length scale like #g = 390 in-
troduces high spatial uncertainty, effectively merging all ob-
ject locations into a single point. In contrast, #g = 90 allows
us to distinguish all objects in memory. Similarly, in Figure
4 (b), we plot the colour similarity distribution when probing
with the target location (yellow). A high colour length scale
#c = 150 yields a wide similarity distribution, i.e. models
an increased uncertainty in the feature domain. In contrast,
the lower length scale #c = 60 has much less variance and is
correctly centred around the target colour (dashed line).

Discussion

The base models with no memory decay require high spatial
and feature uncertainty to capture the human data, and both
parameters must be even higher for the maximum response
models. The distribution response model introduces addi-
tional variance and also better predicts human errors. Adding
the decay parameter & significantly improved model fit and
allowed for lower spatial and feature uncertainties. Our best
model – SSP-decay (dist) – exhibits very high spatial cer-
tainty and a smaller variance in feature dimension than other
models. In general, we find that a mixture of maximum and
response distribution would fit the data best. In detail, the
maximum response for set sizes below four and the distribu-
tion response for higher set sizes are taken. We find this trade-
off worth investigating in future work and are interested to see
whether this hints towards differing decision paradigms.

We were not able to quantitatively compare our results to
the IM (Oberauer & Lin, 2017) as they used different evalua-
tion criteria, and we were unable to replicate their fine-tuned,
participant-specific parameters. However, we found our re-
sults to be qualitatively on par, and we want to point out the

key advantages of our modelling approach. Our proposed
method does not require fixed kernel shapes and generalises
across different experiments without additional fine-tuning or
subject-specific fine-tuning in general. While Oberauer & Lin
(2017) had a decay parameter in their IM-DR model, they
report a significant decrease in model fit for the cueing ex-
periments. In all our models, we observed increasing model
fit on Experiments 2 and 3 without performing any hyper-
parameter fine-tuning. This highlights the generalisability of
our proposed VWM model.

More generally, our method is embedded in the SPA cog-
nitive modelling framework, has been shown to easily inte-
grate a cognitive model of attention (e.g. EMMA (Salvucci,
2001)), and allows for easy implementation in spiking neural
networks, which we intend to provide in future work. Our
model only requires three parameters, in contrast to the six
parameters introduced by the IM. Our parameters are also
highly interpretable and not too sensitive, i.e., the base model
already captures the human phenomena relatively well.

Additionally, our method can naturally represent conjunc-
tions of features through binding without increasing vector
dimension. Hence, the size of conjunction representations
grows slower than the linear growth required by Oberauer &
Lin (2017) or the exponential growth required by conjunctive
coding (Schneegans & Bays, 2017).

The integration of the cognitive attention model EMMA
improved our model fit only slightly, but we believe it will
be beneficial for more complex stimuli, where the scan path
and time estimates are more meaningful. In future work, it
will also be interesting to integrate more complex models of
attention, e.g., PAAV (Nyamsuren & Taatgen, 2013). We also
plan to extend our method to more complex natural scenes, as
proposed by Bates, Alvarez, & Gershman (2023).
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