
ChartQC: Question Classification from Human Attention Data on
Charts

Takumi Nishiyasu∗†
University of Tokyo

Tokyo, Japan
nisiyasu@iis.u-tokyo.ac.jp

Tobias Kostorz∗
University of Stuttgart
Stuttgart, Germany

st177908@stud.uni-stuttgart.de

Yao Wang‡
University of Stuttgart
Stuttgart, Germany

yao.wang@vis.uni-stuttgart.de

Yoichi Sato
University of Tokyo

Tokyo, Japan
ysato@iis.u-tokyo.ac.jp

Andreas Bulling
University of Stuttgart
Stuttgart, Germany

andreas.bulling@vis.uni-stuttgart.de

ChartQC

Question Classification
Chart Image and
Question-driven Saliency

CP

FE

F

RV

U

CV

Figure 1: This work presents ChartQC, a novel approach for classifying question types based on human visual attention data on
charts. It leverages image features, human attention maps, and metrics to predict visual analytical question types on charts. CP:
Comparison, FE: Find Extremum, F: Filter Labels, RV: Retrieve Values, U: Context Understanding, CV: Compute Derived Value.

ABSTRACT
Understanding how humans interact with information visualiza-
tions is crucial for improving user experience and designing effec-
tive visualization systems. While previous studies have focused on
task-agnostic visual attention, the relationship between attention
patterns and visual analytical tasks remains underexplored. This
paper investigates how attention data on charts can be used to clas-
sify question types, providing insights into question-driven gaze
behaviors. We propose ChartQC, a question classification model
leveraging spatial feature alignment in chart images and visual at-
tention data. By aligning spatial features, our approach strengthens
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the integration of visual and attentional cues, improving classifi-
cation accuracy. These findings help deepen the understanding of
user perception in charts and provide a basis for future research on
interactive visual analysis.
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1 INTRODUCTION
Understanding how humans interact with charts (data visualiza-
tions) is essential for improving user experience and designing
effective visualization systems. Charts serve as crucial tools for
data interpretation, allowing users to grasp meaningful insights
from complex data quickly [Tufte 1985]. Although a recent pio-
neering work [Wang et al. 2024b] explored the visual attention
mechanisms on visualizations under tasks (questions), a deeper
understanding of these interactions can help optimize visualization
design, aligning better with user needs. Previous research has pri-
marily focused on task-agnostic visual attention [Borkin et al. 2015;
Matzen et al. 2017; Wang et al. 2023], and has neglected how users
allocate attention when performing visual analytical tasks such as
answering questions about chart data, for example, when finding
the maximum value in the chart. Since these tasks require users
to locate and interpret specific information from visualizations, it
is critical to understand the corresponding attention patterns of
questions.

This paper explores the relationship between human visual at-
tention and visual analytical tasks, aiming to predict question types
based on attention data. By analyzing how users distribute attention
when responding to different questions, we seek to uncover pat-
terns that distinguish question-driven gaze behaviors. Identifying
these patterns will contribute to developing intelligent systems that
can predict user intent and dynamically adjust visualization layouts
to enhance readability and usability. To achieve this, we propose
a model that integrates chart images with human attention data,
leveraging spatial feature alignment to improve question classifica-
tion accuracy. Unlike conventional approaches that rely solely on
textual or numerical data, our model explicitly incorporates visual
and attentional features to enhance classification performance. The
model can better capture the relationships between visual elements
and user focus areas by aligning spatial features between attention
maps and chart structures, improving accuracy in question classifi-
cation. To validate the effectiveness of our approach, we conduct
evaluation experiments on question classification using attention
data and analyze the impact of different model components on clas-
sification performance. In particular, we perform an ablation study
to assess the contribution of various features, such as human atten-
tion data and spatial feature fusion, to the overall model accuracy.
This analysis provides valuable insights into which aspects of our
method are most beneficial for improving classification outcomes.

Our contributions are twofold. First, we propose ChartQC, a
transformer-based model that integrates image features, visual at-
tention maps, and human attention metrics to classify question
types on charts. Second, we validate the effectiveness of our ap-
proach through comprehensive experiments and ablation studies.
Our findings contribute to a deeper understanding of user intent
in visual analytics and lay the foundation for future research in
interactive visualization and gaze-based user modeling.

2 RELATEDWORKS
2.1 Task-(Question-)driven Attention on Charts
Research on task-driven visual attention has examined how users
observe visualizations across different tasks. Studies have shown
that visual attention patterns vary based on cognitive processes,

task complexity, and visualization design [Gomez et al. 2016; Huang
2007; Lallé et al. 2016]. For example, Borkin et al. [2015] found that
attention falls on visual elements that correlate with memorability.
Gomez et al. [2016] demonstrated that gaze behavior is strongly
influenced by task demands and visualization structures. Polatsek
et al. [2018] found significant differences in gaze behaviors between
three visual analysis tasks, attesting that people read completely
different regions of charts when handling different tasks. Wang
et al. [2024b] collected the first large-scale question-driven atten-
tion dataset on charts, and proposed a transformer-based model
to predict question-driven saliency. In this work, we leverage the
question-driven saliency maps as features for predicting question
types.

2.2 Gaze-based User Modeling
Numerous studies in eye-tracking research and cognitive science
have shown that human eye movements offer valuable insights into
cognitive behavior [Bulling and Roggen 2011; Bulling and Zander
2014], inspiring a growing body of work in gaze-based user model-
ing [Hu et al. 2021; Pfleging et al. 2016; Wang et al. 2019]. Models
incorporating human attention data have been developed to infer
user intent, playing a critical role in task recognition and search be-
havior analysis. These include gaze-based search target prediction
models [Barz et al. 2020; Borji et al. 2015; Nishiyasu and Sato 2024;
Sattar et al. 2015; Stauden et al. 2018], as well as models for action
recognition [Fathi et al. 2012] and intent estimation [Lethaus et al.
2013; Sattar et al. 2020]. In reading behavior modeling, prior re-
search has leveraged eye movements to estimate participants’ levels
of text comprehension [Ahn et al. 2020] and mind-wandering ten-
dencies [Huang et al. 2019]. In information visualization, a strong
correlation between human attention and visualization recallability
was found [Wang et al. 2022], and recallability could be predicted
from human visual scanpath [Wang et al. 2024a]. Complementing
these prior works, we focus on the problem of predicting question
types from human visual attention.

3 CHARTQC : QUESTION CLASSIFICATION
ON CHARTS

ChartQC models the relationship between visual attention maps,
image content, and question representation in the Chart Question
Answering (CQA) [Masry et al. 2022] context. Specifically, our
method takes visual attention maps and image features as inputs
to predict question types using a deep learning framework. The
model architecture of ChartQC is depicted in Figure 2.

3.1 Problem Settings
Our approach aims to classify six common visual analytical ques-
tion types in charts: Comparison (CP): The user has to compare
two visual elements with each other. Find Extremum (FE): The
user has to find maximum or minimum values. Retrieve Values
(RV): The user has to read data values from the visualization. Filter
Labels (F): The user has to find labels that match the given condi-
tions. Context Understanding (U): The user has to understand
the contexts of charts, such as questions on title, legend, or descrip-
tion. Compute Derived Value (C): The user has to calculate a
value (e.g. count, sum, median, ratio).
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Our method integrates human attention data to explore how
users interact with visual elements in charts and graphs, aiming
to improve question type classification. Formally, given an image
𝐼 ∈ Rℎ×𝑤×3 representing a chart and human attention data 𝐻 ,
which captures user interactions with the visualization, the goal is
to predict the question type label 𝑦. From 𝐻 , we compute a visual
attention map 𝐴 ∈ Rℎ×𝑤 that aggregates the spatial distribution
of fixations, as well as a set of statistical features (metrics) 𝑆 ∈ R𝑑

extracted from human attention data, including fixation density,
dispersion, inter-fixation time, and visual entropy. The prediction
function is defined as:

𝑓 : (𝐼 , 𝐴, 𝑆) → 𝑦, 𝑦 ∈ {CP, FE, RV, F,U,C}

Our approach leverages a deep learning framework to integrate
the visual features from 𝐼 , the visual attention map from 𝐴, and
statistical characteristics from 𝑆 to predict the question type label
on charts. The model is trained using cross-entropy loss.

3.2 Model
The proposed ChartQC model integrates three key components to
predict question types from charts. First, we extract image features
from the visualization, capturing structural and semantic informa-
tion. Second, we derive attention-based features from human visual
attention maps, leveraging regions of interest that users focus on
during question answering. These two feature sets preserve spatial
correspondence and are concatenated to maintain alignment be-
tween visual content and human attention. Finally, we incorporate
statistical metrics computed from human attention data, such as the
number of fixations, to provide additional context. The combined
features are processed through a neural network to classify the
input into question types.

Image Feature Extraction. We employ a pre-trained Vision
Transformer (Swin [Liu et al. 2021]) to extract deep visual features
from the input chart image 𝐼 ∈ Rℎ×𝑤×3. The transformer processes
the visualization as a sequence of patches and learns meaningful
representations that encapsulate its structural and semantic infor-
mation. These extracted features contribute to understanding how
different chart elements influence question answering.

Visual Saliency Encoding. To enhance the ChartQC with hu-
man visual attention, we incorporate visual saliency maps 𝐴 ∈
Rℎ×𝑤 , which represent the distribution of user attention within
the chart given certain questions. The attention maps can be pre-
dicted from charts and questions using the pre-trained weights of
VisSalFormer [Wang et al. 2024b], which extracts spatial features
of question-driven visual attention.

Human Attention Metrics. Beyond spatial information, we in-
corporate statistical metrics 𝑆 ∈ R𝑑 derived from human attention
data𝐻 to enhance the model’s predictive ability, which includes the
number of fixations, fixation percentage across chart elements (axes,
legend, title, label, data) [Shi et al. 2025], fixation density [Wang et al.
2023], inter-fixation time, saliency coverage [Wang et al. 2024b],
image Shannon Entropy [Bruce and Tsotsos 2005], chart type, and

normalized average center distance of fixations. These metrics pro-
vide additional contextual signals, capturing behavioral trends in
human interaction with visualizations.

Neural Network Architecture. All extracted features—image
features, attention-based features, and statistical metrics—are con-
catenated and fed into a fully connected neural network. The net-
work consists of multiple dense layers with nonlinear activation
functions, followed by a final classification layer that outputs the
predicted question type.

4 EXPERIMENT
4.1 Setup

ImplementationDetails. Weused the SalChartQA dataset [Wang
et al. 2024b] for training and evaluation. SalChartQA includes 6,000
charts with question-driven human visual attentionmaps. The input
of ChartQC consists of an image 𝐼 of size (𝑐, ℎ,𝑤) = (3, 224, 224),
a visual attention map 𝐴 of size (1, ℎ,𝑤) = (1, 224, 224) derived
from human attention data 𝐻 , and statistical features 𝑆 of size 𝑑 ex-
tracted from 𝐻 (e.g., click density, dispersion, entropy). The model
is trained with a batch size of 64 for 75 epochs using the Adam
optimizer (weight decay = 1 × 10−4). The initial learning rate is
2×10−5 and decays by a factor of 0.5 every 5 epochs. Cross-entropy
loss is used during the training process.

Baselines. To evaluate the performance of our proposed ap-
proach, we compared it against several baseline methods. The Ran-
dom classifier randomly assigns a question type to each instance,
serving as a chance-level performance. TheMajor classifier predicts
the most frequent question type in the dataset. The Support Vector
Machine (SVM) is trained on the same handcrafted features derived
from human attention data and visualization characteristics. Addi-
tionally, we finetuned the VisRecall [Wang et al. 2022] model to the
question classification setting. The VisRecall model extracts image
features with Xception [Chollet 2017], followed by a global average
pooling and a linear layer.

4.2 Quantitative Evaluation
Metrics. We used accuracy and F1 scores as evaluation metrics

to assess model performance. Accuracy measures the percentage
of correctly classified question types, while F1 score provides a
balanced measure of precision and recall, particularly useful for
imbalanced question distributions.

Results. We compared the question classification performance
of our proposed approach with baseline methods on the SalChartQA
dataset. Table 1 summarizes the performance of different models in
terms of Accuracy and F1 score. The experimental results demon-
strate that our proposed method outperforms all baseline models,
achieving the highest Accuracy and F1 score. Similarly, VisRecall
has suboptimal performance since the model only takes chart im-
ages as input, which lacks question-related representations. In con-
trast, ChartQC effectively integrates multiple modalities, including
chart image features, question-driven saliency maps, and statistical
metrics extracted from human attention data. By spatially concate-
nating saliency maps with chart image features, the model could
learn richer representations that better align with human cognitive
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Figure 2: Overview of the model architecture of ChartQC. ChartQC integrates image features extracted from a chart, attention-
based features from a visual attention map, and statistical characteristics derived from human attention data. These features
are concatenated and processed through a neural network to predict question types.

Table 1: Evaluation of question classification methods on the
SalChartQA dataset. The best results are shown in bold.

Model Accuracy F1

Random 0.155 0.156
Major 0.172 0.170
SVM 0.425 0.387
VisRecall [Wang et al. 2022] 0.350 0.303

ChartQC (ours) 0.452 0.434

processes when interacting with information visualizations. The
inclusion of statistical features further enhances performance by
providing additional context regarding user interaction patterns.

4.3 Ablation Study
To further analyze the contributions of individual components in
ChartQC, we conduct an ablation study by evaluating variations of
our model on the SalChartQA dataset. Each model isolates specific
input modalities to understand their impact on overall performance.
Table 2 presents the ablation study results. By taking away visual
features and human attention maps, the performance significantly
dropped from 0.452 to 0.377. By removing visual features and met-
rics, the performance dropped to 0.366. The contribution of human
attention metrics is also confirmed by removing just the metrics
from the full model (0.452 vs. 0.383). In conclusion, the ablation
study confirmed the contribution of every input channel of ChartQC
– human attention maps, visualizations, and statistical metrics – for
effective question type classification on charts.

Table 2: Ablation study for ChartQC. The best results are
shown in bold.

Metrics Saliency Image Accuracy F1

✓ × × 0.377 0.321
× ✓ × 0.366 0.328
× ✓ ✓ 0.383 0.382

✓ ✓ ✓ 0.452 0.434

4.4 Qualitative Evaluation
Figure 3 (top) illustrates cases where the model successfully predicts
the correct question type. In the left example, visual attention was
mainly focused on the labels of the depicted line graphs. The model
recognizes this (e.g. using the saliency distribution metrics) and
correctly predicts the ’filter labels’ category. In the middle exam-
ple, multiple labels in the pie chart, especially their corresponding
percentages, were at the center of attention. This indicates a value-
based task, e.g., calculating a sum, which was predicted as the C
label accordingly. In the right example, most of the fixations were
focused on exactly one value, which suggests a simple task, for
example, just finding and answering a data value.

However, as shown in Figure 3 (bottom), there are instances
where the model misclassifies the question type. These errors often
occur when the visual attention map is ambiguous or when the
question requires a more complex contextual understanding be-
yond visual features alone. By analyzing these failure cases, we can
identify areas for improvement, such as refining feature representa-
tions or incorporating additional contextual information to enhance
model performance. Some of the incorrect classifications can be
attributed to the labels in the dataset: The left example shows an
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Q: Which two countries data for Consumption
based CO2 emissions is represented in this graph?

Label: Filter Labels
Prediction: Filter Labels

Q: What's the combined share of top 
three energy sources?

Label: Compute Derived Value
Prediction: Compute Derived Value

Q: What is the percentage of companion 
animal?

Label: Retrieve Value
Prediction: Retrieve Value

Q: What's the percentage of all adults 
who see race relations as bad?

Label: RV 
Prediction: RV

Q: What is the share of Rep/Lean Rep that 
response "he will need to be more cautious"?

Label: RV
Prediction: RV

Q: What's the ratio of green bar 
occurrences with values 28 and 23?

Label: C
Prediction: C

Q: When does the line reach the peak?

Label: Find Extremum
Prediction: Filter Labels

Q: What's the value of largest bar?

Label: Find Extremum
Prediction: Retrieve Value

Q: What is the difference between maximum price of 
beer and minimum price of hot dog over the years?

Label: Comparison
Prediction: Compute Derived Value

Figure 3: Examples of questions that the ChartQC model
correctly (top row) and incorrectly classified (bottom row).

extreme value task in which the label must be identified. In this case
(and in many others) more than one task label is suitable for the
question, which can lead to problems, especially with single-label
classification. This shows the need for further research into clearer
labels and multi-label classification in intention prediction. In the
middle example, the viewer is asked to read a value from the largest
bar. Almost all fixations are directly placed on the target value in the
heatmap, similar to the previous RV examples. We can therefore see
that the visual behavior of already sorted bar charts, in particular,
makes it difficult for the model to identify the FE label. In the right
example, the model predicted a comparison even though it was a
calculation task. Here, different labels fit the question again. Also,
the step-by-step difference calculation of neighboring values looks
similar to a comparison task. The specific behavior needed for one
question type can therefore lead to potential patterns of another
question type being imitated.

5 DISCUSSION
ChartQC Performance. ChartQC only achieves 0.452 in accu-

racy, which can be attributed to the inherent difficulty of predicting
user intent from attention data. As discussed in [Wang et al. 2024a],
attention data is often noisy, making extracting clear patterns for
accurate classification challenging. The variability in human visual
attention further complicates the prediction task, leading to subopti-
mal model performance. Still, the ablation study (Table 2) highlights
that while individual components contribute to model performance,
their optimal integration is crucial. The results suggest that metrics
alone provide a weak signal, but when combined with saliency
and visual features, they enhance predictive power. Additionally,
the consistent improvement observed across models incorporating
human attention maps indicates their strong relevance in capturing
user attention patterns. Future work may explore alternative fu-
sion strategies to enhance performance, such as adaptive weighting
mechanisms for different modalities.

Limitations and Future Work. This work used mouse clicks
as a proxy for human attention data. However, mouse clicks do not
fully capture natural gaze behavior, which may limit the accuracy of

attention-based modeling. Using gaze-tracking data could provide
a more reliable representation of human attention patterns. Our
current model does not explicitly consider task-related features
such as label contents or whole-chart descriptions, which provide
crucial context for question answering. Additionally, the image en-
coder was not explicitly trained to process human attention maps.
Fine-tuning the image encoder on datasets incorporating gaze infor-
mation, while also integrating task-related features, could enhance
the model’s ability to utilize both contextual and attention-based
signals effectively. Another limitation is that some of the questions
in the dataset contain multiple tasks (e.g. finding maximum values
and performing calculations on them). While this can lead to per-
formance problems with single-label classification (as in this study),
there is great potential for future research and the application of
multi-label classification.

Privacy and Ethics Statement. Demonstrating the feasibility
and simplicity of learning user intent (question types) from human
attention data is critical for raising awareness within the commu-
nity about the potential privacy and ethical risks associated with
human attention data. By highlighting these vulnerabilities, we
emphasize the need for strong safeguards to prevent unintended
leaks of sensitive information, encourage responsible development,
and drive the creation of privacy-preserving solutions. Without a
clear grasp of these risks, researchers and developers may uninten-
tionally neglect ethical considerations, leaving systems vulnerable
to exploitation and compromising user data privacy.

6 CONCLUSION
In this work, we explored the use of human attention data to pre-
dict question types in chart question-answering tasks. We proposed
ChartQC , a novel model combining chart images and visual atten-
tion maps, utilizing spatial correspondence through feature con-
catenation to enhance classification performance. Our experiments
demonstrated the feasibility of classifying question types using this
approach, providing a promising direction for further research in
human-computer interaction and designing adaptive systems for
information visualization.
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