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ABSTRACT 
Mobile gaze-based interaction with multiple displays may 
occur from arbitrary positions and orientations. However, 
maintaining high gaze estimation accuracy in such situa-
tions remains a significant challenge. In this paper, we 
present GazeProjector, a system that combines (1) natural 
feature tracking on displays to determine the mobile eye 
tracker’s position relative to a display with (2) accurate 
point-of-gaze estimation. GazeProjector allows for seam-
less gaze estimation and interaction on multiple displays of 
arbitrary sizes independently of the user’s position and 
orientation to the display. In a user study with 12 partici-
pants we compare GazeProjector to established methods 
(here: visual on-screen markers and a state-of-the-art video-
based motion capture system). We show that our approach 
is robust to varying head poses, orientations, and distances 
to the display, while still providing high gaze estimation 
accuracy across multiple displays without re-calibration for 
each variation. Our system represents an important step 
towards the vision of pervasive gaze-based interfaces. 
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INTRODUCTION 
Gaze is a powerful modality for interacting with displays, 
as it naturally indicates what we visually attend to and what 
we are interested in [30]. Gaze is furthermore faster than 
other existing pointing devices (e.g., a mouse [22]). For that 
reason, gaze-based interaction received considerable atten-
tion with applications ranging from controlling desktops 
[13,33], to text entry [18], to target selection [27], and to 
entering passwords [7]. First prototypes used desktop-like 
settings and stationary eye trackers in which a user’s head 
was fixed (regarding position and orientation).  

Latest advances in head-mounted eye tracking point the 
way towards pervasive gaze-based interactions with situat-
ed displays in everyday settings [6]. These trackers are 
commonly equipped with two cameras: (1) a scene camera 
partly capturing a user’s current field of view, and (2) an 
eye camera recording a close-up video of the user’s pupil 
position. Such eye trackers have to be calibrated to a specif-
ic user for a specific display before first use to establish a 
mapping between the pupil’s 2D positions in each of the 
cameras’ coordinate systems. This calibration is time-
consuming and cumbersome as it involves looking at sever-
al calibration points on the target display.  

 
Figure 1. GazeProjector enables seamless gaze-based interac-

tion with multiple displays from arbitrary locations and orien-
tations, such as wall-sized displays (a), horizontal screens (b), 

and handheld devices (c) – without active recalibration. 

Another problem is that calibration is typically performed 
for a fixed position and orientation of the user to a single 
display. While this is less of an issue for stationary settings 
and TV-sized displays, mobile settings and multiple – po-
tentially large – displays evoke two types of motion: (1) 
user movements in front of a single display to inspect other 
parts of the display’s content; and (2), head movements to 
reach targets outside the ocular motor range [10]. In addi-
tion, there might be multiple displays present, causing fur-
ther movements. Both types of motion considerably reduce 
gaze estimation accuracy [8]. In order to achieve high gaze 
estimation accuracy, it is crucial to track a user’s (and eye 
tracker’s respectively) position and orientation relative to a 
display. Solutions that realize this include the augmentation 
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of the environment with visual markers [5,32] as well as 
using vision-based motion capturing systems (e.g., 
OptiTrack1). While such approaches can achieve high track-
ing and gaze estimation accuracy, the need to deploy them 
for every display the user might want to interact with cur-
rently severely limits uptake and truly pervasive and spon-
taneous gaze-based interaction. 

In this paper we present GazeProjector, a system that al-
lows for accurate gaze estimation on arbitrary displays 
independent of the user’s position and orientation (see Fig-
ure 1). Similar to Touch Projector [4], the eye tracker con-
tinuously tracks its position and orientation relative to dif-
ferent displays using natural feature tracking on the scene 
camera’s video stream. To do so, displays continuously 
stream their (potentially dynamic) content to a server, 
which performs the feature matching. Thus, GazeProjector 
does neither require a motion capturing system nor visual 
markers preinstalled in the environment. After a one-time 
calibration with an arbitrary display GazeProjector is able 
to transform pupil positions onto any connected display in 
the environment, as long as a part of that display is visible 
to the mobile eye tracker’s scene camera. As the calibration 
is independent of a potential target display, our system 
allows for accurate gaze estimation and seamless interac-
tion across multiple displays, and thus empowers users to 
freely move around within the environment. 

In a controlled performance study with 12 participants we 
compared our approach to a state-of-the-art video-based 
OptiTrack motion capturing system as well as a marker-
based approach. In the first task, participants looked at on-
screen targets from various positions and orientations in 
front of a large display. In a second task, we compared 
GazeProjector to the marker-based approach on multiple 
displays (here: a wall-sized display, a tabletop, and a tablet 
PC). In both tasks, we found that our approach compen-
sated well for head movements (i.e., change of orientation) 
and user relocation (i.e., change of location). Thus, our 
work offers the following three contributions: 

§ Location- and orientation-independent gaze estima-
tion on a display (of varying size/resolution) without 
requiring any instrumentation in the environment. 

§ Accurate gaze estimation on arbitrary displays in 
the environment without requiring recalibrating the 
system for each display independently. 

§ Maintaining high gaze estimation accuracy without 
requiring recalibrating the system for varying posi-
tions, orientations and displays. 

Overall, these features enable both application developers 
(who wish to employ gaze as additional input modality) as 
well as researchers (who wish to study a user’s gaze) to 
rapidly do so in fully pervasive settings, without the need 
for augmenting the environment. 
                                                             
1 https://www.naturalpoint.com/optitrack/ 

RELATED WORK 
Our work builds on methods for (1) gaze approximation 
and estimation on displays, (2) gaze interaction using head-
mounted eye trackers, as well as (3) tracking the spatial 
relationship between users and displays. 

Gaze Approximation and Estimation on Displays 
Several previous works used head orientation as an approx-
imation of where people look. For example, Sippl et al. 
used a remote camera to detect facial features, such as eyes 
and nose tip, and estimate head pose on four areas on the 
display [23]. Nakanishi et al. relied on a stereo face tracking 
system and the 3D head pose as an approximation of gaze 
direction [20]. Finally, ViewPointer aimed to detect eye 
contact between users and devices using a wearable camera 
and IR tags placed in the environment [25]. While useful 
for coarse attention measurements, none of these approach-
es allowed for accurate gaze estimation on the display. 

Accurate gaze estimation on displays remains a significant 
challenge – particularly when remote eye trackers (i.e., eye 
trackers placed at a display) are used. Such trackers only 
allow a single user to interact with a display at any point in 
time and any interaction is restricted to the tracking range 
of typically 50-80 cm in a central area in front of the dis-
play, thereby severely limiting users’ mobility [24,27]. 
Previous work either focused on extending the tracking 
range of remote trackers [11,19], or on calibration-free 
(spontaneous) interaction but was either limited to interac-
tion along a horizontal axis, i.e., without full 2D gaze esti-
mation [34] or required dynamic interfaces [31]. Stellmach 
et al. addressed the mobility (interacting from different 
positions/orientations) of users [28] by using an additional 
external tracking system. GazeProjector differs in that it 
does not require such additional systems. 

Gaze Interaction Using Head-mounted Eye Trackers 
Head-mounted eye trackers are more flexible as they allow 
the user to move freely in front of the display. Early work 
on using head-mounted eye trackers for interaction still 
required calibration to a single, stationary display prior to 
first use [9]. More recent approaches aimed to estimate gaze 
dynamically but either required visual markers attached to 
the display [32] or in the environment to detect gaze on pre-
defined interaction areas, e.g., to control a TV set [5].  

With advances in computer vision, visual markers can be 
substituted with detecting the display directly in the scene 
camera’s field of view. Mardanbegi et al. detect screens 
based on quadrilaterals found in the scene [16]. Turner et al. 
extended this to multiple displays (based on the displays’ 
aspect ratios) by adding a second camera and a method for 
transparently switching between two calibrations [29]. 
Unlike GazeProjector, both approaches require the display 
to be fully visible to the scene camera, which cannot be 
guaranteed at all times in mobile settings. Also, relying on 
automatically selected feature points instead of screen bor-
ders is more robust to changing light conditions and gener-
alizes better to displays of arbitrary shape and size. 



Tracking Spatial Relationships of Users and Displays 
Tracking the spatial relationship of users (and the users’ 
devices respectively) can be done in two ways. First, exter-
nal tracking equipment can be used to determine a device’s 
exact position in 3D space (and thus its spatial relationship 
to a display in the environment). The Proximity Toolkit 
makes use of such high-precision tracking equipment and 
provides an interface to acquire spatial relationships [17]. 
While such a setup results in extremely high accuracy, it is 
often impractical for outdoor use. 

Alternatively the device’s camera can be used to identify its 
spatial relationship to a display. Many approaches exist, 
such as temporarily showing on-screen visual markers [2] 
or using dynamic markers following a camera’s position 
[21]. More recently, natural feature tracking was used to 
determine spatial relationships. Herbert et al. used Scale-
Invariant Feature Transform (SIFT) to determine the cam-
era’s spatial relationship to a display [12]. Their system 
tried to identify a screenshot of the display in the device’s 
camera stream. Virtual Projection extended this approach to 
dynamically updated displays [3]. Touch Projector further 
allowed for tracking multiple displays provided that display 
contents differ sufficiently [4]. GazeProjector uses these 
underlying concepts, but advances them with respect to 
tracking efficiency: we use FAST/FREAK (with their sig-
nificantly improved matching accuracy [1]). The combina-
tion of these two algorithms further increases the frame rate 
from 10 fps in Virtual Projection [3] to more than 20 fps – 
thus allowing for more interactive frame rates at higher 
precision than previous systems of that kind. 

ENABLING GAZE INTERACTION ON LARGE DISPLAYS 
As mentioned before, estimating a user’s gaze on a large 
display and in multi-display environments using a head-
mounted eye tracker faces two key challenges: the eye 
tracker has to be calibrated and used from fixed positions 
and orientations for all displays. During calibration, the 
entire display has to be visible in the eye tracker’s scene 
camera. Ideally, the eye tracker only has to be calibrated 
once. This can be achieved by (1) calibrating pupil posi-
tions to the scene camera coordinate system; and (2) track-
ing the spatial relationship between the eye tracker and a 
specific display and (3) mapping 2D gaze positions in scene 
camera coordinate space to that display. 

Eye Tracker Calibration  
GazeProjector uses a one-time calibration to map pupil 
positions to the scene camera’s coordinate system. Because 
of this, there is no need to perform the calibration on the 
display one intends to interact with. Instead, the system can 
be calibrated once on any display in the environment (e.g., 
a laptop). This independence of the target display has two 
advantages: The usage of the eye tracker is not restricted to 
the same distance and/or orientation to a display while 
calibrating as this is handled by the self-localization direct-
ly; and the calibration does not depend on a single display, 
thus allowing for seamless gaze estimation across several 
displays in multi-display environments. 

Tracking the Spatial Relationship to Displays 
To determine the spatial relationship between the eye track-
er and a specific display, we use the approach described in 
[3], yet with different feature detection algorithms. Specifi-
cally, our system streams the scene camera’s video to a 
server that is aware of all screens (and their displayed con-
tent) in the environment. All displays in the environment 
repeatedly stream screenshots to the server to reflect their 
current content (i.e., in case of quickly updated content, 
such as videos). The server is thus only aware of the physi-
cal dimensions of each display (i.e., size and resolution) as 
well as their current content, but not their physical location. 
This is especially important for mobile devices, which fre-
quently change their position and orientation over time. 

 
Figure 2. Estimation of gaze on a display using the eye track-
er’s scene camera (a) and pupil camera (b): the software de-
termines the transformation between the scene camera’s im-
age plane and the display (c), combines it with the calibration 
(d) between the eye camera’s and the scene camera’s coordi-

nate systems (e) to obtain the location on the display (f). 

The server then processes the incoming screenshots as well 
as incoming frames from the field camera using FAST 
feature detectors [15] and FREAK feature descriptors [1]. 
The idea is to use current screenshots as template images, 
which the server tries to find in the observed images (here: 
the field camera’s video). If a template matches an observed 
image, the algorithm calculates the transformation matrix 
(i.e., a homography), which describes the transformation of 
points from one image plane (say: a video frame) into an-
other image plane (say: the display’s screenshot). 

Gaze Estimation 
The transformation matrix allows for bidirectional mapping 
between locations in the scene camera’s and target display’s 
coordinate system. Note that the display does not have to be 
visible in full in the scene view. Instead, a unique sub-
region (a region that not occurring anywhere else on that 
display) is sufficient given enough features within it to 
allow for robust tracking. Likewise, unique sub-regions and 
their features on multiple displays present in the scene cam-
era allow for detecting each of the displays within one 
frame. As in Touch Projector (where touch positions are 
transformed), GazeProjector uses the transformation matrix 
to estimate gaze positions on the display. Figure 2 illus-
trates this procedure in more detail. If multiple displays are 
present, a transformation matrix is calculated for each dis-
play and the gaze position is transformed accordingly. 



Implementation 
Our system consists of three components: (1) a monocular 
head-mounted PUPIL eye tracker2 connected to a laptop 
[14]; (2) a one or more planar displays of arbitrary size; and 
(3) a desktop computer driving the displays. Laptop and 
desktop computer are connected via WiFi. The eye tracking 
software on the laptop is written in Python and is based on 
PUPIL’s open source mobile eye tracking platform2. The 
software running on the desktop computer is written in C# 
(.NET Framework 4.5). For feature detection, description 
and matching, we use EmguCV3 as wrapper for OpenCV4. 
For faster processing, we downscale display screenshots to 
384 × 240 pixels and camera frames to 320 × 240 pixels. 
We achieve up to 30 fps on one display (20 fps with three 
displays) and are only limited by WiFi bandwidth. 

The system allows for distances ranging from 0.5 times the 
display’s diagonal up to six times the display’s diagonal. 
When being further away, the accuracy decreases as the 
display observed in the camera’s field of view decreases in 
size (thus, removing several features). We believe that a 
multi-scale approach of screenshots will increase the opera-
tional range, yet we decided not to include it in this proof-
of-concept implementation. In addition, the tracking com-
pensates for an angular offset of ±60°. While this is suffi-
cient for most interactions, fast eye/head movements will 
have a slight impact on accuracy. However, we believe that 
the increasing processing capabilities of future devices will 
allow for both faster image processing on larger images 
(i.e., less or no scaling required) for higher accuracy. 

Example Application 
We built an example application to demonstrate the use of 
GazeProjector in a multi-display setting. It showcases how 
people can seamlessly interact with multiple displays while 
freely moving around in the environment. 

 
Figure 3. Our example application: after a user select an event 

from a public calendar (a), that information is shown on the 
personal mobile device, where gaze estimation also works (b). 

We envision an office building where public information 
screens are distributed showing a calendar application (see 
Figure 3a). We use GazeProjector to interact with these 
displays in a ‘walk-up-and-use’ fashion. The only require-
ment is to calibrate the eye tracker (e.g., at the beginning of 
a work day using a tablet). The calibration procedure uses a 
round marker displayed at nine different positions around 
the screen at which the user has to gaze on. In our interac-

                                                             
2 http://pupil-labs.com/pupil/ 
3 http://www.emgu.com/ 
4 http://opencv.org/  

tion scenario users are able to transfer information between 
public and private displays (e.g., a handheld). Looking at a 
specific event (e.g., a talk) for a certain dwell time (say: 2 
seconds) selects that event, which is then shown on the 
user’s handheld device. GazeProjector also works on that 
device with the same calibration (see Figure 3b). The video 
figure illustrates the example in more detail. Note, that the 
flickering of the gaze point stems from the pupil not being 
detected, which then prevents correct gaze mapping. 

EXPERIMENT I: GAZE ESTIMATION ACCURACY 
We first conducted a controlled laboratory study to assess 
GazeProjector’s gaze estimation accuracy in comparison to 
existing but more heavyweight tracking approaches. 

Independent Variables 
We had two independent variables in this experiment: Mode 
(i.e., the gaze estimation method used), and Location (i.e., 
where participants stood in front of the display). 

Mode: We chose three different modes for gaze estimation: 
GazeProjector (GP) implemented as described before; 
Marker Tracking5 (MT), which uses a set of on-screen 
markers for tracking the orientation between the eye tracker 
and the display provided by the PUPIL framework; and a 
simple Head Orientation (HO) approach, which tracks the 
participant’s head using an external OptiTrack system. For 
each of these modes, we calibrated the eye tracker from two 
different locations to investigate the effect of distance dur-
ing calibration. Both were placed centrally in front of the 
display with one location being close to the display and one 
being further away. We further calibrated the eye tracker 
for each participant separately instead of using one calibra-
tion (see limitations section for further details). 

Location: We chose six different locations in front of the 
display to simulate a more realistic setting. Three of these 
locations were close to the display and three were further 
away. The eye tracker was only calibrated for the central 
near and far central locations. This is more realistic, as 
users would not calibrate for every position in a walk-in-
and-use scenario. Note that we calibrated the eye tracker for 
each participant separately instead of using one calibration 
(see limitations section for further details). Since no visual 
feedback was given to them and to keep the experiment at a 
reasonable length, participants had to perform the set of 
tasks only once. We then computed the gaze estimation 
accuracy post-hoc for each of the calibrations.  

Task & Procedure 
We implemented a gaze pointing task in which participants 
had to fixate nine different target locations represented as 
red circles (50 pixels or 98 mm) on the display with equal 
distances between them (see Fig. 4). A pilot study showed 
that participants were affected by visualizing their gaze 
point on the display. Especially if the gaze position was 
incorrect, people tended to “move” the gaze point to com-

                                                             
5 http://www.pupil-labs.com/blog/2013/12/036-release.html 



pensate for the error. We therefore opted to not provide any 
visual feedback to the participants. Participants were in-
structed to look at each target as quickly and accurately as 
possible. Each target location was shown for five seconds. 

 
Figure 4. Experimental setup showing all locations (L1-L6) 
and orientations relative to the display, the nine different 

positions (T1-T9) of on-screen visual targets, and the back-
ground image used for feature tracking. 

For each Mode, participants first calibrated from the near-
center location and performed the tasks for all other loca-
tions. Afterwards, the calibration for the far-center location 
was recorded and gaze positions as well as errors were 
evaluated post-hoc. Following best practices in gaze estima-
tion experiments, we validated all calibrations by asking 
participants to fixate once on each point on a 9-point pat-
tern. Finally, we asked for demographic information. 

We collected gaze data from the eye tracker and transfor-
mation matrices calculated by GP as well as MT. Further-
more, we recorded data about the head position and orienta-
tion with OptiTrack. Data was sampled at 30 Hz (i.e., 150 
samples per on-screen target) leading to a total of 1,350 
samples for each Mode and Location combination. We 
discarded samples for which participants’ pupil was not 
detected (7.5%). We dropped the first two seconds of the 
five seconds per target (60 samples, 40%) for each target, 
which was the maximum time required to find the target All 
together we dropped 276,985 out of 583,200 samples (3 
modes × 6 locations × 2 calibrations × 12 participants ×	 
1,350 samples), leaving 306,215 samples recorded: 140,532 
for GP, 165,683 for MT (the sample set used for HO). 

Experimental Design 
We used a within-subject design with the independent vari-
ables Mode (GP-near, GP-far, MT-near, MT-far, HO-near, 
HO-far) and Location (front-left, front-center, front-right, 
back-left, back-center, back-right).  

We counterbalanced the order of Location across partici-
pants using a Latin Square. Although it is possible to record 
all position information in parallel, we opted to have GP 
and MT separate, as markers would favor GazeProjector’s 
tracking. The HO mode was recorded while participants 
were using the MT mode. Half of our participants started 
with the MT, and the other half with GP. Thus, each partic-

ipant performed the task twice per location. For each mode 
and location, the nine targets (equally distributed in a 3 × 3 
grid on-screen) were presented in random order. 

Apparatus 
Figure 4 shows our experimental setup: we used a large 
front-projected wall with a size of 2.75 × 2.07 meters (diag-
onal: 3.44 meters). The six locations were distributed within 
a nine square meter area in front of the display as follows: 
three locations at a distance of 1.65 m (near), and three 
locations at a distance of 3.05 m (far). The left and right 
locations for near were exactly 2.33 meters away from the 
display’s centerline (i.e., an angular offset of ±45°); those 
for far were located 3.52 m away from the display’s center-
line (i.e., an angular offset of ±30°). Naturally, the two 
center locations for near and far had an angular offset of 0°. 
Locations located far allow participants to observe the en-
tire screen at once (the display covers 48.52°), while for 
locations located near the display covers 79.60° – thus 
exceeding the full-scale ocular motor range of ±55° [10]). 
The maximum visual angles were 3.4° (near) and 1.84° 
(far), and the minimal ones were 1.5° (near) and 1.3° (far).  

Participants 
Twelve participants (three female) between 22 and 32 years 
(mean = 27.45 years, SD = 3.1 years) were recruited from a 
local university campus. All participants had normal or 
corrected to normal vision; none reported any form of visu-
al impairments (e.g., color blindness). 

GAZE ESTIMATION RESULTS 
We corrected all reported gaze estimation accuracies by 
subtracting the mean calibration error (2.04° with SD = 
0.69°). To verify this, we performed a one-way ANOVA 
with a Bonferroni-corrected post-hoc analysis on calibration 
accuracies across all Modes, and found no significant dif-
ferences. In subsequent post hoc analyses, we used Bonfer-
roni-corrected confidence intervals to retain comparisons 
against α = 0.05. Furthermore, we used Greenhouse-Geisser 
correction in cases where sphericity had been violated. 

Gaze Estimation Error 
To assess the gaze estimation error, we calculated the aver-
age gaze estimation error in degrees of visual angle. That is, 
the difference of the visual angle between the predicted on-
screen gaze point and the actual fixation targets for all 
Modes and Locations. We then performed a 6 × 6 (Mode × 
Location) within subjects ANOVA on gaze estimation 
errors and found a main effect for Mode (F1.989,21.879 = 
8.526, p < .002), a main effect for Location (F5,55 = 7.363, p 
< .001), but we did not find an interaction between the two. 

We performed post-hoc tests to further understand the main 
effect of Mode. Most importantly, we found significant 
differences within MT and HO for the two calibrations near 
and far (all p < .033). In both cases, the near calibration led 
to lower estimation errors. GP, on the other hand, did not 
show such an effect, suggesting that the point of calibration 
does not effect its gaze estimation error significantly, and 
the difference in means was also lower than for the other 



two (GP: 0.281°; MT: 0.931°; HO: 0.948°) – yet, also for 
GP, the mean estimation errors were slightly lower for the 
near calibration than for the far one. 

This is further reflected when comparing across Modes: 
GP-near differed significantly from both MT-far and HO-
far (all p < .01). However, there was no significant differ-
ence between the Modes for the near calibration. Further-
more, GP-far did not differ significantly from any other 
Mode despite having relatively large differences in error.  

 
Figure 5. Mean gaze estimation error for every location for 
MT-near, MT-far, HO-near, HO-far, GP-near and GP-far. 

Error bars indicate ± standard error of the mean. 

GP-near showed the lowest error (M = 1.80°, SD = 0.20°), 
followed by GP-far (M = 2.08°, SD = 0.27°), and HO-near 
(M = 2.09°, SD = 0.23°). MT-near (M = 2.23°, SD = 0.31°) 
also has an estimated gaze error of less than 3 degrees. The 
other Modes performed slightly worse: MT-far (M = 3.16°, 
SD = 0.32°) and HO-far (M = 3.04°, SD = 0.31°). Figure 5 
summarizes theses results. 

Post-hoc tests on Location revealed that the significant 
main effect stems from participants’ distance to the display: 
front-left differed significantly from back-center and back-
right (all p < .019). Front-right also differed significantly 
from back-center (p < .011). Overall, back-center led to the 
least estimation errors (M = 1.93°, SD = 0.23°), followed by 
back-right (M = 2.01°, SD = 0.17°), and back-left (M = 
2.22°, SD = 0.30°). The front locations performed worse 
with front-center having the least errors (M = 2.45°, SD = 
0.28°), followed by front-left (M = 2.86°, SD = 0.29°) and 
front-right (M = 2.86°, SD = 0.30°). On average, the back 
locations had a lower estimation error of 2.08° (SD = 0.23°) 
compared to the front locations with 2.72° (SD = 0.29°). 

Differences for On-screen Target Positions 
We did not expect high gaze estimation errors for each of 
the Modes. However, we wanted to analyze whether the on-
screen targets resulted in different estimation errors and 
thus analyzed the results separately for each on-screen tar-
get. For MT, we found no significant main effects on gaze 
estimation error for Target. We found the same for HO. 
Only for GP we found significant differences for gaze esti-

mation for Target. Our analysis revealed that predominantly 
the bottom-left target T7 differed significantly from few 
others (T2, T3, T6 and T8) and led to higher estimation 
errors. We assume that this is due to the scene camera see-
ing too few features, which in turn increased the error of the 
transformation matrix. Figure 6 shows gaze estimation 
errors for the different modes averaged over all targets.  

 
Figure 6. Visualization the mean gaze error (ellipses) for the 
three modes MT, HO and GP and all calibrations averaged 
over all targets. Black circles visualize the mean gaze points. 

Eye and Head Movements 
We were further interested in whether participants mainly 
moved their head or their eyes to point at an on-screen 
target location. As expected [9], we found that the average 
normalized gaze position in the field camera’s video was x 
= 0.44 and y = 0.47 (SDx = 0.21; SDy = 0.25). Thus, gaze 
positions remained near the center of the participants’ field 
of view. We subsequently analyzed the gaze position for 
every Location in front of the display and found no signifi-
cant differences between them. The largest average differ-
ence was 0.03. Table 1 lists these results for each Location. 

Location Mean (x,y) SD (x,y) Var (x,y) 
front-left 0.43,0.45 0.19,0.24 0.038,0.060 
front-center 0.45,0.47 0.20,0.25 0.040,0.062 
front-right 0.46,0.46 0.22,0.27 0.052,0.076 
back-left 0.46,0.48 0.23,0.25 0.054,0.065 
back-center 0.45,0.48 0.20,0.24 0.044,0.058 
back-right 0.43,0.48 0.20,0.23 0.043,0.057 

Table 1. Mean, standard deviation and variance for 
x,y-coordinates of normalized gaze positions in the  

participants’ field of view. 

The OptiTrack data provided detailed information of partic-
ipants’ head orientation  (HO). We found that the largest 
head turns covered the entire width of the display (far: 
51.2°, near: 83.66°). On average head motions covered an 
angle of 31.61° (SD = 2.04°). This further confirms our 
results in that HO might be a suitable approximation for 
gaze estimation with an average error of 2.09° (SD = 0.23°) 
for HO-near and 3.04° (SD = 0.31°) for HO-far. 

EXPERIMENT II: MULTIPLE DISPLAYS 
We conducted a second controlled laboratory study to as-
sess GazeProjector’s gaze estimation accuracy across mul-
tiple displays of varying form factors – with only a single 
calibration performed on one of the displays.  



Independent Variables 
We had two independent variables: Mode (i.e., the gaze 
estimation method used), and Screen (i.e., on which display 
the target was shown). There were no fixed positions to 
mimic a more realistic scenario where participants were 
free to move in the environment.  

Mode: In this experiment we chose to use only GazeProjec-
tor (GP) and Marker Tracking (MT), but not head orienta-
tion, as we believe it will perform similarly across displays. 
We calibrated for two locations (as in the first experiment), 
but additionally recorded calibrations on a 40” tabletop 
display (Surface), and on a 9.7” iPad Air (iPad). We chose 
to do so to investigate the effects on gaze estimation accu-
racy of calibrating (1) on surfaces not orthogonal to the 
participant, and (2) on personal devices with a considerably 
smaller display. The latter resembles a more realistic sce-
nario where users calibrate the eye tracker once on a per-
sonal device. Again, calibrations were analyzed post hoc. 

 
Figure 7. Our setup showing the three screens (including their 

background images for feature tracking) used during the 
experiment, as well as the placement of the nine targets per 

screen. Note that all participants were free to choose a location 
within the blue area throughout the experiment. 

Screen: In addition to the large display used in the first 
experiment (Wall), we chose to add the other two displays 
used for calibration as well (here: Surface, and iPad). 

Task & Procedure 
The task used in this experiment was the same as in the first 
one: participants had to fixate on-screen targets. However, 
since we had three displays, participants now had to acquire 
nine targets per display (27 in total) as shown in Figure 6 
As mentioned before, participants could freely choose and 
change their position between the displays. We again opted 
to not provide any feedback to participants for the same 
reasons as before. Participants were instructed to look at 
each target as quickly and accurately as possible. Each 
target location was shown for ten seconds to give the partic-
ipants enough time to find the target on the correct display. 
There was only one target on one display shown at a time. 

The procedure was nearly the same as for the first experi-
ment but with an additional calibration for Surface and iPad 
after all tasks were completed. On the additional displays 
we used the same 9-point calibration pattern. At the end of 
the study we asked for demographic information. 

We used the same data collection method as in the first 
experiment. Data was sampled at 30 Hz (i.e., 300 samples 
for each target, 8100 samples for each Mode), and samples 
were discarded if the participants’ pupil was not detected. 
As we expected an increase in search time for the target, we 
dropped the first five seconds (150 samples) for each target, 
leaving 259,745 samples (GP: 124,421; MT: 135,324). 

Experimental Design 
We used a within-subject 8 Mode (GP-near, GP-far, GP-
Surface, GP-iPad, MT-near, MT-far, MT-Surface, MT-
iPad) × 3 Screens (Wall, Surface, iPad) design. Half of our 
participants started with GP, the other half with MT (as in 
experiment I). The targets were randomized, thus the next 
target appeared on any of the three Screens. The 27 targets 
were again placed in 3 × 3 grids (i.e., nine per display, 50 
pixels in radius, or 10 mm on iPad, 23 mm on Surface) on 
each display. In total, participants acquired 54 targets.  

Apparatus 
We used the same front-projected Wall as in the first exper-
iment. In addition, we had a 40” Microsoft Surface 2 (Sur-
face), and a 9.7” iPad Air tablet (iPad). Figure 7 shows our 
setup. The tabletop display was placed in front of the pro-
jection wall in an area where the participant would occlude 
the beamer projection. Participants held the tablet in hand 
during the experiment. They could freely choose their loca-
tion within a nine square meter area. 

MULTI-DISPLAY RESULTS 
We again corrected gaze estimation accuracy by subtracting 
the mean calibration error. The mean calibration error was 
2.18° (SD = 0.69°). We again verified that we could do so 
by performing an ANOVA with a Bonferroni-corrected 
post-hoc analysis on calibration accuracies across all 
Modes, and found no significant differences. As in experi-
ment I, we used Bonferroni-corrected confidence intervals 
in all post hoc analyses and Greenhouse-Geisser correction 
in cases where sphericity had been violated. 

Gaze Estimation Error 
We calculated the average gaze estimation error as in ex-
periment I and subsequently performed a 8 × 3 (Mode × 
Screen) within subjects ANOVA on them. We found main 
effects for Mode (F7,77 = 21.733, p < .001), and for Screen 
(F2,22 = 82.705, p < .001) as well as an interaction effect 
between the two (F14,154 = 9.100, p < .001). 

Post-hoc pairwise multiple means comparisons revealed 
that GP-near and GP-far differed significantly from MT-
far, MT-Surface and MT-iPad (all p < .001). Furthermore, 
GP-Surface differed significantly from MT-Surface and 
MT-iPad (all p < .007). And finally, GP-iPad also differed 
significantly from MT-far, MT-Surface, and MT-iPad (all p 



< .039). It is noteworthy, however, that both GP and MT 
did not show any significant differences between their dif-
ferent calibrations, suggesting that the device on which they 
were calibrated on did not impact accuracy. 

 
Figure 8. Mean gaze estimation error of each mode for each 
display. Error bars indicate ± standard error of the mean. 

Overall, GP-near had the lowest estimation error (M = 
2.77°, SD = 0.20°), followed by GP-far (M = 3.01°, SD = 
0.16°), GP-iPad (M = 3.24°, SD = 0.17°) and GP-Surface 
(M = 3.31°, SD = 0.16°) across all Screens. For all MT 
variations, the estimated gaze errors were larger than 4 
degrees. Figure 8 summarizes theses results. 

As for the main effect for Screen, post-hoc multiple means 
comparisons revealed that Wall was significantly different 
from the other two Screens (all p < .001). However, there 
was no significant difference between Surface and iPad. 
Overall, targets on the Wall had the least estimation error 
(M = 2.07°, SD = 0.07°), followed by Surface (M = 4.52°, 
SD = 0.22°) and iPad (M = 5.12°, SD = 0.23°). 

As shown in Figure 8, the source of the Mode × Screen 
interaction is the increased difference between MT and GP 
(all calibration modes) between the Wall and Surface/iPad, 
with the Wall resulting in much lower estimation errors 
than the other two. It is noteworthy, that MT-near performs 
similarly to all GP modes on the Surface, but its estimation 
error increases drastically on the iPad, although all GP 
modes remain at their level. We subsequently ran separate 
ANOVAs on Modes for each Screen, and found several 
significant effects. On the Wall, only MT-iPad and GP-near 
differed significantly (p < .008) indicating that nearly all 
modes performed similarly.  

On the Surface, the differences become more prominent, 
with GP-near and GP-far outperforming all MT modes 
except MT-near (all p < .016). Furthermore, GP-Surface 
and GP-iPad differed significantly from MT-iPad (all p < 
.012). We found the most differences on the iPad, where all 
GP modes are significantly less error-prone than all MT 
modes (all p < 0.03). Here we again did not find any differ-

ences within GP and MT for different calibration modes. 
Figure 9 visualizes the mean gaze estimation errors for each 
of the screens and targets for both MT and GP.  

 
Figure 9. Visualization of the mean gaze error (ellipses) for all 

different modes, MT and GP, and all calibrations averaged 
over all targets over all screens. Additionally, black circles 

visualize the mean gaze estimations. 

DISCUSSION 
Our results show that – on a single display – GazeProjector 
achieves an average gaze estimation accuracy of 1.78° 
compared to 2.64° for MT, and 2.65° for HO. We used the 
same calibration grid for both the near and far calibration 
resulting in different visual angles in view space: the size of 
the calibrated visual field decreases when distance increas-
es. Thus, the near calibration achieves better results than the 
far one. When used on multiple displays (and only being 
calibrated on a single screen), GazeProjector achieves an 
average gaze estimation accuracy of 2.47° compared to 
3.60° for MT over all modes and target screens. Although 
this accuracy is slightly lower than the 0.5°–1° reported for 
the PUPIL eye tracking glasses under ideal conditions (i.e., 
in a stationary desktop setting with a 27” screen and opti-
mal lighting conditions [14]), we achieve this accuracy in a 
fully unconstrained, pervasive interaction setting.  

Pervasive Settings 
The first advantage of GazeProjector is its suitability for 
pervasive gaze interaction settings [6]. Current approaches 
that allow for gaze interaction on multiple displays using 
monocular mobile eye trackers require heavyweight exter-
nal motion capturing systems or visual markers. While 
motion capture systems allow for high-precision tracking, 
they are (1) costly and (2) cannot easily be installed in pub-
lic environments. Markers reduce this, but have another 
drawback: all displays have to be augmented with them – 
either with printed ones attached to a display’s frame [32, 
5], or digital ones shown on the display. However, printed 
markers quickly clutter the environment, in particular in 
settings with a large number of displays. While digital 
markers could only be shown on demand, they still take 
away display space and “compete” with the main content.  

While binocular systems can automatically compensate for 
vergence error, estimating gaze in display coordinates still 
requires to track changes in the user’s position and orienta-
tion relative to these displays. This severely limits the use 
of these devices to instrumented environments. GazePro-
jector, however, allows users to interact from arbitrary 
locations and orientations relative to multiple displays 



without this need – and, as our experimental results show, 
GazeProjector does so without lowering accuracy. Thus, 
our approach allows for unconstrained and seamless gaze 
interaction with multiple displays while on the move. 

Display Visibility & Multi-Display Interactions 
Display tracking using visual markers requires the whole 
target display to be visible in the eye tracker scene camera’s 
field of view during calibration and interaction. In contrast 
GazeProjector relies on natural feature tracking and pro-
vides competitive gaze estimation accuracy even if only a 
fraction of the target display is visible. Naturally, the larger 
the visible portion of the display, the lower the tracking 
error. However, we found that a quarter of the display is 
usually sufficient, provided that enough features (e.g., high 
frequencies) are found in that portion. This allows Gaze-
Projector to work on much larger displays as well as with 
more extreme head movements than current eye trackers. 

Our results show that GazeProjector provides robust gaze 
estimation accuracy for different displays of different sizes 
without a need for recalibrating the eye tracker to each of 
the displays. Instead, the eye tracker only needs to be cali-
brated once (on any display) and gaze estimates are then 
automatically mapped to the other displays during runtime. 
Applying our calibration method in the presented experi-
ments, we were still able to achieve an accuracy of 3.24° 
when the eye tracker had been calibrated on a 9.7” iPad Air 
screen. This is a significant advancement over state-of-the-
art gaze estimation approaches.  

Head Movement and Orientation 
We further found that head movements are more prevalent 
in gaze interaction with large displays compared to smaller 
displays (e.g., mobile devices). This finding is in line with 
controlled laboratory studies on human vision: humans 
employ head movements for gaze shifts with ocular orbital 
eccentricity exceeding 20° [26]. While head movements 
pose a significant challenge to current head-mounted eye 
trackers, GazeProjector proved to be robust to head move-
ments, which is an essential feature for using head-mounted 
eye tracking systems for large screens. 

Limitations 
Despite its numerous advantages over state-of-the-art eye-
tracking systems, GazeProjector also comes with some 
limitations: first, our current implementation requires con-
tinuous snapshots of the target displays to be transferred to 
a central server. Consequently, all displays need to be regis-
tered with such a server a priori. Furthermore, increasing 
the number of displays also increases the network load for 
transferring real-time updates of a display’s content. How-
ever, we believe that future network technologies may 
overcome this limitation.  

Second, GazeProjector’s gaze estimation accuracy depends 
on the quality of image data from the scene camera: these 
cameras usually come with wide angle lenses to cover a 
larger field of view, resulting in smaller representations of a 

target display. This may increase errors in the transfor-
mation matrix due to insufficient image features. This tech-
nical limitation can be overcome by using different lenses 
for scene cameras. Furthermore, as with all optical tracking 
systems, environmental conditions such as changes in light-
ing will affect our system as this influences the video quali-
ty of the scene camera. And finally, GazeProjector’s accu-
racy is dependent on the number of features of a display’s 
content [12], thus requiring feature-rich content on displays. 
For multiple displays, we found that wallpapers in Win-
dows 8 are sufficiently different. Here, the server can detect 
potential similarities across displays through feature match-
ing of their respective content. 

Nevertheless, we believe that GazeProjector is a promising 
system that realizes continuous gaze-based interaction in 
pervasive settings and multi display environments. 

CONCLUSIONS & FUTURE WORK 
In this paper, we presented GazeProjector, an approach for 
accurate gaze estimation and seamless interaction with 
multiple large displays using head-mounted eye trackers. In 
contrast to existing systems, GazeProjector only requires a 
single calibration performed with an arbitrary display and is 
robust to the user’s location and orientation to the displays 
as well as head movements. Furthermore, GazeProjector 
works without external tracking equipment, such as motion 
capturing systems or markers attached to display. 

We conducted two experiments in which we compared 
GazeProjector to existing, well-established techniques 
(which require additional equipment), and found that our 
approach compares well to these techniques. When being 
used on multiple displays, the results are even more promis-
ing. Overall, our results underline the significant potential 
to finally bring gaze-based interaction into pervasive set-
tings that involve gaze interaction with multiple displays.  

We tested GazeProjector in a laboratory environment to 
gain first insights into its performance compared to existing 
techniques. However, we want to take our approach one 
step further. One obvious step is to take it to the real world 
and evaluate its performance on (1) ultra-large displays, 
such as media façades, and (2) do so with multiple users 
simultaneously. This will further add to the eye tracking 
community, as it has virtually been impossible to test eye-
tracking systems in such large scales. 
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