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User-centred multimodal authentication: securing handheld mobile devices
using gaze and touch input
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aSchool of Computing Science, University of Glasgow, Glasgow, UK; bInstitute for Visualization and Interactive Systems, University of Stuttgart,
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ABSTRACT
Handheld mobile devices store a plethora of sensitive data, such as private emails, personal
messages, photos, and location data. Authentication is essential to protect access to sensitive
data. However, the majority of mobile devices are currently secured by singlemodal
authentication schemes which are vulnerable to shoulder surfing, smudge attacks, and thermal
attacks. While some authentication schemes protect against one of these attacks, only few
schemes address all three of them. We propose multimodal authentication where touch and
gaze input are combined to resist shoulder surfing, as well as smudge and thermal attacks.
Based on a series of previously published works where we studied the usability of several user-
centred multimodal authentication designs and their security against multiple threat models,
we provide a comprehensive overview of multimodal authentication on handheld mobile
devices. We further present guidelines on how to leverage multiple input modalities for
enhancing the usability and security of user authentication on mobile devices.
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1. Introduction

Today’s mobile devices allow users to access private data
and perform sensitive actions, such as viewing personal
photos or messages as well as making online payments.
To protect access to said data and actions, users employ
authentication mechanisms to lock their phones. These
authentication mechanisms include knowledge-based
schemes – like PINs and unlock patterns – and bio-
metric schemes – such as fingerprint authentication
and facial recognition. Knowledge-based and biometric
schemes suffer from several vulnerabilities: The suscep-
tibility of knowledge-based authentication schemes to
shoulder surfing was demonstrated repeatedly (De
Luca et al., 2013; Eiband et al., 2017; Khamis et al.,
2016; von Zezschwitz et al., 2015; Khamis, Trotter,
et al., 2018). These schemes are also vulnerable to ther-
mal attacks (Abdelrahman et al., 2017; Abdrabou et al.,
2021, 2020) and smudge attacks (Aviv et al., 2010;
Schneegass et al., 2014; von Zezschwitz et al., 2013).
While there is no evidence that biometric authentication
is vulnerable to these side-channel attacks at the time of
publishing this paper, biometric data can be stolen
remotely (Stokkenes, Ramachandra, and Busch,2016;
Zhang et al., 2015), and once leaked they cannot be

changed by users. These are among the reasons Android
and iOS require users to set a backup PIN, pattern or
password as a fallback method, citing the insecurity of
biometric authentication (Google,2016). Requiring a
fallback method opens the door for ‘bypass attacks’
(Tiefenau et al., 2019) where, for example, an attacker
may intentionally push their finger against the finger-
print sensor until the system prompts them to use the
fallback method, which is vulnerable to the aforemen-
tioned side-channel attacks that impact knowledge-
based schemes.

This means that we need more secure and usable
authentication methods for mobile devices that are resi-
lient to shoulder surfing, thermal and smudge attacks.
To combat these threats, this work proposes the usage
of multimodal user authentication on mobile devices
by combining gaze and touch input to enter passwords.
To realise this, we propose two multimodal authentica-
tion schemes: GazeTouchPass and GazeTouchPIN. The
key differences between these two schemes are as fol-
lows: GazeTouchPass requires passwords that are com-
posed of both gaze input and touch input. For example,
a GazeTouchPass password can be ‘Gaze left’, ‘Touch 1’,
‘Gaze right’, ‘Touch 2’. The second system GazeTouch-
PIN uses numeric PINs but allows users to enter them
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using gaze and touch. For example, to enter ‘1’, the user
needs to touch a pair of digits (either ‘1 and 2’ or ‘0 and
1’ depending on the currently shown layout) and then
gaze to the left in case if the layout shows ‘1 and 2’ or
to the right in case of ‘0 and 1’. GazeTouchPass and
GazeTouchPINare knowledge-based schemes that are
resilient to smudge and thermal attacks by design
because of relying on gaze input (Katsini et al., 2020).

After proposing the two schemes, we report five usabil-
ity and security lab studies, with a total of 76 participants.
First, we evaluate the schemes’ usability in two usability
studies – one for each scheme – shedding light on
efficiency, error rates, and memorability. Second, we
evaluate the resistance of each scheme against advanced
shoulder-surfing attacks through three security studies.
For this, we considered three realistic threat models: (1)
iterative observation attacks where the attacker first
observes the user’s gaze input in one occasion, then
observes their touch input in another occasion, and
finally combines the observations to infer the password;
(2) side observation attacks where the attacker finds the
ideal angle from which they can see the user’s gaze and
touch input at the same time; and (3) multiple shoulder
surfers where a pair of attackers simultaneously observes
the user during authentication, each focusing on either
gaze or touch input. The usability studies reveal that enter-
ing a 4-symbol multimodal password using GazeTouch-
Pass takes 3.14 seconds on average, while a 4-digit PIN
entered using GazeTouchPINrequires 10.82 seconds. The
results of our security studies show that multimodal
authentication using gaze and touch significantly improves
resilience to observation attacks in all investigated threat
models compared to a unimodal authentication baseline
that uses touch to enter 4-digit PINs. However, Gaze-
TouchPass is particularly more secure against side obser-
vation attacks, whereas GazeTouchPIN is more secure
iterative observation attacks. Based on our investigations,
we conclude with guidelines for designing user-centred
multimodal authentication.

Research Contribution: In summary, this article makes
three main contributions: (1) we introduce the concept of
multimodal authentication using a combination of touch
and gaze onmobile devices, (2) we present the implemen-
tation of two schemes, GazeTouchPass and GazeTouch-
PIN, and an evaluation of their usability and security
considering three advanced yet realistic threat models,
and (3) we outline guidelines for designing usable and
secure multimodal authentication.

The rest of the paper is structured as follows: Section
2 discusses related work and highlights key differences
to previous research. Section 3 presents the concept
and implementations of GazeTouchPass and
GazeTouchPIN, as well as the three threat models

considered in this work. Section 4 reports on two usabil-
ity studies evaluating GazeTouchPass and GazeTouch-
PIN respectively. Section 5 presents three security
studies: The first two studies focus on one system
each, and assess their observation resistance against
two threat models, whereas the third study evaluates
both systems against the third threat model. Section 6
discusses the results and outlines our guidelines for
usable and secure multimodal authentication.

2. Related work

We build on several strands of prior work, most notably
shoulder-surfing resistant authentication, gaze for
authentication, and multimodal authentication on
mobile devices.

2.1. Shoulder-surfing resistant authentication

State-of-the-art approaches to counter shoulder-surfing
aim to make eavesdropping of password entries difficult
for attackers. Multiple previous works rely on presenting
users with cues that impact the way they enter their pass-
words. Examples of schemes that incorporated visual
cues include SwiPIN (von Zezschwitz et al., 2015) and
CueAuth (Khamis, Trotter, et al., 2018) which display
arrows on each digit on a 10-digit PIN pad. Users then
indicate their input by performing a gesture that matches
the arrow on the digit theywish to enter. Other approaches
employed haptic cues, such as VibraPass (De Luca, von
Zezschwitz, and Hußmann,2009) that uses haptic cues to
communicate to users whether they should enter correct
or incorrect PIN digits to confuse shoulder surfers. Bianchi
et al. proposed a number of authentication schemes that
use haptic and audio cues: PhoneLock (Bianchi et al.,
2011), SpinLock (Bianchi, Oakley, and Kwon,2011), Time-
Lock (Bianchi, Oakley, and Kwon,2012) and Colorlock
(Bianchi, Oakley, and Kwon,2012). While those schemes
are promising for resisting shoulder-surfing attacks, a com-
mon issue in cue-based authentication is a long authentica-
tion duration due to the time required to observe the cue
before providing input. For instance, SwiPIN requires 3.7
seconds to authenticate (von Zezschwitz et al., 2015),
whereas PhoneLock requires up to 28 seconds (Bianchi
et al., 2011).

The aforementioned schemes inspire our multimo-
dal schemes, in particular GazeTouchPIN . We learned
from previous work that cue-based authentication is
secure against observation but can be significantly
slower when displaying too many cues. Further,
using cues that require time to perceive (e.g.vibration
patterns), or when users need to perform a linear
search (e.g.find a digit in a completely randomised
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arrangement of digits). Thus, in GazeTouchPIN , users
are shown one of only two random layouts (see Figure
1(b,c)). The choice of layout to display is determined
randomly at the entry of each of the 4-digit PIN.

2.2. Gaze for authentication on mobile devices

There has been significant progress recently in gaze esti-
mation, allowing eye tracking (Hohlfeld et al., 2015;
Wood and Bulling.,2014; Ishimaru et al., 2013; Krafka
et al., 2016; Khamis, Baier, et al., 2018) and the detection
of gaze gestures (Khamis et al., 2016; Vaitukaitis and
Bulling,2012; Zhang, Kulkarni, and Morris,2017) using
front-facing cameras that are readily integrated in
mobile devices. For an overview of eye tracking on
mobile devices, we refer the reader to the survey by Kha-
mis, Alt, and Bulling (2018).

Gaze was shown to be a promising modality for pass-
word entry in desktop settings (Best and Duch-
owski,2016; Cymek et al., 2014; De Luca, Denzel, and
Hussmann,2009; De Luca, Weiss, and Drewes,2007;
Forget, Chiasson, and Biddle,2010; Kumar et al., 2007;
Sakai et al., 2016; Sluganovic et al., 2016; Khamis, Trot-
ter, et al., 2018; Abdrabou et al., 2019). Gaze is also a
popular choice for biometric authentication (Kinnunen,
Sedlak, and Bednarik,2010; Song et al., 2016; Rigas,
Abdulin, and Komogortsev,2016). Researchers have
also utilised gaze for improving password selection
(Alt et al., 2016; Bulling, Alt, and Schmidt,2012), pass-
word recall (Sridharan et al., 2016) and understanding
user’s password choice strategies (Katsini et al., 2019).
For a review of the use of gaze for both knowledge-
based and biometric authentication, we refer the reader
to the work of Katsini et al. (2020).

Prior work shows that gaze is hard to observe
(Almoctar et al., 2018), however by observing the
user’s eyes (instead of the screen), attackers may still
eavesdrop password (De Luca, Denzel, and

Hussmann,2009). To offset such an attack, schemes
based on Electrooculography (EOG) have been
demonstrated to work even with closed eyes when
users where EOG glasses (Dieter Findling, Quddus,
and Sigg,2019). Compared to existing schemes, the
novelty of our schemes lies in the combination of
gaze and touch input on unmodified mobile devices.
Consequently, attackers would need to (a) observe
the user’s gaze input, (b) observe the user’s touch
input, and (c) combine both observations. For these
reasons, we opted for evaluating our schemes under
threat models that go beyond simple one-time
observations.

2.3. Multimodal authentication on mobile
devices

Although GazeTouchPass and GazeTouchPIN are the
first authentication schemes that combine gaze and
touch on mobile devices, there have been other schemes
that employ multiple modalities. For example, Phone-
Lock (Bianchi et al., 2011), SpinLock (Bianchi, Oakley,
and Kwon,2011), TimeLock (Bianchi, Oakley, and
Kwon,2012), and Colorlock (Bianchi, Oakley, and
Kwon,2012) resist shoulder surfing by using combi-
nations of audio and haptic feedback as cues for pass-
word entry. The idea behind these systems is using a
hidden output channel for cues that only users can per-
ceive. Using cues has a positive influence on shoulder
surfing resistance which inspired our implementation
of GazeTouchPIN , where we use a randomised visual
cue that is difficult to observe simultaneously while
observing the user’s eyes.

Another feature of GazeTouchPass and GazeTouch-
PIN is that they split the attacker’s attention because
gaze input and touch input need to be observed simul-
taneously. In terms of input-splitting, XSide by De Luca
et al. (2014) is most similar to our work. XSide exploits
the back of the device interaction to make observations
more difficult. It was found that splitting the input
strongly influences the observation resistance of a sys-
tem as it requires splitting the attackers’ attention.
This conclusion influenced the design of our systems
as we demonstrate in the following sections.

Unlike the aforementioned multimodal schemes,
users of GazeTouchPass and GazeTouchPIN do not
need any additional hardware (e.g. motors, earplugs or
double-sided touch screens). The users only need one
hand for interaction, which is preferred by users over
two-handed interaction (Karlson, Bederson, and
SanGiovanni,2005).

While preliminary evaluations of GazeTouchPass
and GazeTouchPIN were reported in Khamis et al.

Figure 1. Layout (a) was used for GazeTouchPass and touch-only
(GazeTouchPIN ’s baseline). Layouts (b) and (c) are the two possible
layouts for the touch+random as well as for the GazeTouchPIN
system.
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(2016), Khamis, Hassib, et al. (2017) and Khamis, Ban-
delow, et al. (2017), we significantly extend that work
by (a) directly comparing the GazeTouchPass and
GazeTouchPIN , (b) presenting guidelines for usable
and secure multimodal authentication, (c) reflecting
on previous work in that topic in more depth, (d)
including an in-depth discussion that reflects on the
results, ethical considerations, contributions in prac-
tice, and comparison to related work, and (e) report-
ing results on the memorability of GazeTouchPass.

3. Multimodal authentication using gaze and
touch

In this section, we present the concept and implemen-
tations of each of GazeTouchPass and GazeTouchPIN
. Both schemes are implemented as Android apps and
do not require any additional hardware, because the
gaze gestures are detected using the front-facing cam-
era that is readily integrated into off-the-shelf mobile
devices. Even though there is a recent uptake of
front-facing depth cameras, which typically improve
eye tracking accuracy (Khamis, Alt, and Bulling,2018),
we used standard video (RGB) front-facing cameras to
ensure compatibility with the majority of smartphones.
The user’s face and eyes are first detected using a
Viola–Jones detector (Viola and Jones,2004). We
then adapted a method proposed by Zhang, Bulling,
and Gellersen (2014) for detecting gestures to the left
and to the right without the need for eye tracking cali-
bration. We were careful to avoid requiring calibration
because calibration is known to be perceived as a
tedious and a time-consuming task (Majaranta and
Bulling,2014). We further followed the recommen-
dation by Katsini et al. that gaze-based authentication
should not require calibration due to its negative
impact on usability (Katsini et al., 2020). While the
method by Zhang, Bulling, and Gellersen (2014)
measures the distance between the user’s pupil centre
and the eye corner in each eye, our method measures
the distance between the face’s centre and the pupil for
each eye. We opted for relying on the face’s centre
rather than eye corner as low-resolution cameras are
more likely to accurately detect the face rather than
the eye corner. Gaze directions are then estimated
based on the ratio between both distances.

3.1. GazeTouchPass

GazeTouchPass combines touch-based PINs (0–9) and
gaze gestures (left and right) for authentication. The
system uses a theoretical password space of (12n),
where n denotes the length of the password. Our

prototype uses a length of n=4 to allow comparing
GazeTouchPass to prior work. However, a deployed
version of the system would allow longer inputs and
would require a minimum length of inputs using
each modality to ensure higher security. The user
interface consists of a 10-digit keypad as shown in
Figure 1(a). Users log in by touching digits and mov-
ing their eyes to the left or right.

Examples of GazeTouchPass passwords are shown in
Table 1. Because GazeTouchPass passwords consist of
two types of input – gaze input and touch input –
they introduce a new feature to passwords which we
refer to as modality-switch-count that denote a change
from one input method to another. We expect that
the higher number of switches from gaze to touch
input or vice versa, the more difficult it will be to
observe it. Namely, we expect a password, such as ‘1-
left-2-right’ (3-switches), to be more secure than ‘1-2-
left-right’ (1-switch). The reason for this is that from
the perspective of an attacker, each modality-switch is
equivalent to a switch of the attacker’s focus between
the touchscreen and the eyes (see Figure 2 Camera C).

3.2. GazeTouchPIN

GazeTouchPIN differs from GazeTouchPass in a num-
ber of ways. While GazeTouchPass combines gaze and
touch into multimodal passwords (e.g. left-3-right-4),
GazeTouchPIN uses classical 4-digit PINs that are
entered using gaze and touch input (e.g. 1234). In Gaze-
TouchPIN , users select the digit they wish to enter in
two steps: in Step (1), they select a pair of digits from
one of two layouts shown in Figures 1(b,c), before
Step (2) gaze left or right to indicate the desired digit.
For example, if a user is shown Layout B in Figure 1,
touches the pair (1, 2), and then gazes to the right,
then they have selected ‘2’. The choice of layout is deter-
mined randomly at every entry (e.g. four times for a 4-
digit PIN). The reason we opted for showing a random
layout is as follows: We expect this approach to be
resistant to typical shoulder surfing attacks; at every
entry of a 4-digits PIN, observing the touchscreen

Table 1. Sample GazeTouchPass passwords.
Condition Example 1 Example 2

0-switches (baseline) 1-2-3-4 left-right-left-left
1-switch left-1-2-3 1-2-left-right
2-switches left-1-left-right left-1-2-right
3-switches 1-left-2-right left-1-right-2

Notes: We studied the effect of the number of switches between gaze and
touch input (modality-switch-count). We expect that the more switches
between modalities a password has, the more resistant it is to shoulder
surfing. 0-switches is the baseline condition used when evaluating Gaze-
TouchPass , as it represents a unimodal password consisting of touch
input only or gaze input only.
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would result in a pair of digits. An attacker who
observes all touch inputs would still have to try 2n pos-
sibilities to determine the correct PIN combination
(where n denotes the number of digits in the PIN).
Moreover, if an attacker observes one modality input
after another (e.g. observing the eyes after observing
the touchscreen), the attacker would not know which
layout the user is responding to. There is only a 1

2n

chance that the attacker observes matching touch and
gaze input. This makes the approach resistant to itera-
tive attacks. In contrast to GazeTouchPass , attackers
of GazeTouchPIN can predict which modality will be
used next; users of GazeTouchPIN perform a touch
input followed by a gaze gesture. Nevertheless, even
when observing from an optimal side view that shows
the user’s eyes and touchscreen clearly, attackers
would have to quickly switch focus between the eyes
and the screen. GazeTouchPIN uses 4-digit PINs, thus
maintaining the memorability and the password space
of classical PIN-based systems, which has been studied
extensively in prior work (von Zezschwitz, Dunphy,
and De Luca,2013).

At the same time, having only two layouts supports
learning effects and avoids any cognitive load caused
by selecting from a completely randomised arrangement
of digits.

3.3. Threat models

In this section we describe the threat models we evaluate
GazeTouchPass and GazeTouchPIN against. The secur-
ity evaluations are reported in Section 5.

The traditional threat model for shoulder-surfing
attacks where an attacker observes the user during
input would be trivial and of low effectiveness against
our proposed schemes. Thus, we cover three advanced

shoulder-surfing attacks. In each threat model, the
user is in a public space and the attacker(s) know how
the authentication schemes work. After observing the
password, the attacker(s) get hold of the device (e.g.
by stealing it or as the user leaves it unattended), and
try to log in using the observed password.

3.3.1. Threat model 1: side observation attacks
In this threat model, the user is observed from a view-
point that allows the user’s gaze input as well as touch
input to be eavesdropped (e.g. in a train). The distance
between the attacker and the user is close enough to see
the touchscreen, but far enough to reduce the effort of
switching focus back and forth between the user’s eyes
and the device’s touchscreen (see Camera C in Figure 2).

3.3.2. Threat model 2: iterative observation attacks
In this model, the attacker has the chance to observe the
user twice: (1) the attacker exclusively focuses on one
modality per observation – for example, first on the
input on the screen (Camera A in Figure 2) and (2)
on the users’ eyes (Camera B in Figure 2), or vice
versa. The challenge of this attack is to correctly observe
both sequences and to correctly combine them later.

3.3.3. Threat model 3: multiple observers attacks
In this threat model, two adversaries are simultaneously
observing the user. The pair decides upfront on an obser-
vation strategy. Each of the two has a chance to observe
part of the authentication process from an optimal angle
(see Figure 2). The attackers then discuss how their obser-
vations can be combined. This threat model is motivated
by previous work that showed that multiple people some-
times simultaneously shoulder surf user (Eiband et al.,
2017), and by real-world theft, pick-pocketing and bur-
glary situations, where there are oftenmultiple adversaries.

Figure 2. The figure shows the camera setup used for both usability studies. To prepare videos for the subsequent security studies, we
recorded users using three cameras. Camera A recorded the phone screen (phone-view) to observe the touch input. Camera B
recorded the participant’s face (eyes-view) to observe the eye movements. Camera C simultaneously recorded the screen and the
user’s eyes (side-view). The views from Camera A and B were used to evaluate the schemes’ resistance to iterative observation attacks,
whereas the view from Camera C was used to evaluate resistance to side observation attacks.
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4. Usability evaluations

We evaluated the usability of GazeTouchPass and Gaze-
TouchPIN in two separate user studies. Both user studies
used a within-subjects design.We detail the independent
variables of each study in the sections below.

4.1. Usability study 1: usability of GazeTouchPass

The aim of this study was to analyse the usability of
GazeTouchPass and to collect video recordings of gaze
and touch input for the subsequent security studies.
The study had one independent variable: modality-
switch-count , which had four conditions: 0-switches
(baseline), 1-switch, 2-switches, and 3-switches (see
Table 1). As this a repeated measures experiment, each
participant went through all conditions by performing
16 authentications (4 passwords × 4 conditions) using
randomly generated passwords. Recall that GazeTouch-
Pass passwords consist of digits ( 0–9) and gaze direc-
tions (left and right) as detailed in Section 3.1.

4.1.1. Usability study 1 participants
We recruited 13 participants (4 males and 9 females),
aged between 21 and 35 years (M = 25.23, SD = 3.8)
through mailing lists. All participants had normal or
corrected-to-normal vision. Five reported to use PINs
as authentication mechanism. Others used lock pat-
terns, graphical passwords, and TouchID. Participants
were compensated with an online shopping voucher.

4.1.2. Usability study 1 procedure
Upon arrival participants were asked to sit at a table in a
meeting room. The experimenter then explained the
study and asked the participant to sign a consent form.
Afterwards, the experimenter started the app on the

smartphone, described how it worked and handed it to
the participant. Each participant was then allowed to
perform four training runs, one per condition, to get
acquainted with the system. Those authentication
attempts were excluded from further analyses. At each
authentication attempt, the experimenter read out the
password to be entered according to a previously gener-
ated, randomised list. We logged all authentication
attempts and recorded the participants using three HD
video cameras (see Figure 2). Participants repeated
entry in case of an unsuccessful login. After entering
all 16 passwords, we then asked the participant to freely
define a GazeTouchPass password of their own choice.
We did not set any requirements for that password.
This step was done to evaluate memorability at a later
stage and to understand user choices of passwords. We
concluded the study with a semi-structured interview.

4.1.3. Usability study 1 results
Each participant entered 16 passwords, each four repre-
senting one condition, resulting in a total of
13× 16 = 208 GazeTouchPass password entries.
Three videos were recorded per password entry for
each camera view (624 videos). We evaluated the sys-
tem’s usability by operationalising efficiency as input
speed and effectiveness as error rates.

Input Speed. We measured the time taken to input
the passwords starting from the moment the user
touches the screen for the first time till the moment
the fourth entry is detected by the system. Figure 3
suggests that mean authentication times do not vary
greatly among different number of modality switches.
Overall mean authentication time is 3.1 seconds
(SD=1.3). For our analysis, we first excluded 3 out of
72 input time measurements as outliers (. m+ 3×

Figure 3. Mean authentication times for passwords with different numbers of modality switches. Error bars represent the standard
deviation. Authentication times do not vary significantly among different number of modality switches. Overall mean authentication
time is 3.1 seconds (SD = 1.3).
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SD). No significant main effects were found for
modality-switch-count on authentication time (p . .05).

Error Rates. We also logged the number of failed
login attempts, which were false detection by the system.
Figure 4 shows that there were fewer errors in the case of
passwords with 3-switches. While providing multiple
consecutive gaze gestures can be error prone, having 3
switches in a 4-digit password can be achieved only by
alternating gaze gestures and digits.

Qualitative Feedback. After interaction, we gathered
qualitative feedback from the participants through a
short interview. Six out of 13 participants reported they
would use GazeTouchPass as a primary authentication
scheme. Nine reported that they would not use it for
daily unlocking, but rather for insecure situations (e.g. sur-
rounded by others) or to protect sensitive data, such as
online banking apps. One participant indicated that they
would be willing to use GazeTouchPass for a one-time
unlock (e.g.when switching the phone on). Four partici-
pants said they would not be willing to do anything
extra for higher security; two of them added that they do
not use any lock mechanism on their phones.

Memorability. We informed the participants that
they would be asked for the passwords they selected
for the memorability test in the future, without speci-
fying a date. We emailed the participants five days
after the study asking them for the passwords they
selected. Participants had up to three guesses to pro-
vide their password. Eleven out of 13 participants
remembered their passwords – 10 were correct on
the first guess, one was correct on the second guess,
and two could not correctly recall their password
after three guesses.

4.2. Usability study 2: usability of GazeTouchPIN

Similar to GazeTouchPass ’s usability evaluation, the
aim of this study is to evaluate the usability of Gaze-
TouchPIN and to collect realistic password entries for
the subsequent security study.

GazeTouchPIN uses 4-digit PINs, thus maintaining the
memorability and the password space of classical PIN-
based systems, which has been studied extensively in
prior work (von Zezschwitz, Dunphy, and De
Luca,2013). Thus, this usability study focuses only on
efficiency and effectiveness (i.e. input speed and error
rate). To understand the impact of using gaze and touch
to enter 4-digit PINs, and to distinguish the impact of
the randomised layout from that of gaze and touch
input, we compared GazeTouchPIN to two baselines. To
understand how GazeTouchPIN performs compared to
standard unimodal 4-digit PINs, and to differentiate the
impact of the random layout from the impact of input
using touch and gaze, we include one independent variable
(input method) with the following three conditions:

(1) The touch-only (Figure 1(a)) method uses the tra-
ditional PIN keypad (baseline). This served as a
baseline that uses touch input only.

(2) The touch+random ( Figure 1(b,c)) method uses
touch to select the desired digit from one of two
randomly shuffling layouts. This will provide
insights about the shuffling idea and help dis-
tinguish the impact of the multimodal factor.

(3) GazeTouchPIN ( Figure 1(b,c)) uses touch input to
select a pair of horizontally aligned PIN digits and

Figure 4. Number of attempts before a successful entry. Errors are less for passwords with 3-switches; consecutive gaze gestures can
be error prone, while 3-switches in an n = 4 password can be only achieved by alternating gaze and touch input.
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then a gaze gesture to the left/right to select the
desired PIN.

4.2.1. Usability study 2 participants
We recruited 12 participants (2 females, 10 males), aged
between 19 and 31 years (M = 24.8, SD = 3.6), through
mailing lists. Asked about whether they use authentica-
tion on their phones, participants reported using Tou-
chID, lock pattern and PINs. All participants had
normal or corrected-to-normal vision.

4.2.2. Usability study 2 procedure
We followed a procedure similar to the one used in the
usability study of GazeTouchPass . Participants were
allowed to perform three training runs, one with each
method, to get acquainted with the different methods.
Furthermore, in this usability study the experimenter
read out the input method to be used in addition to
the PIN at each authentication attempt according to a
previously generated randomised list. Participants
entered 6 pre-defined PINs using all three authentica-
tion methods, resulting in 6 PINs × 3 methods = 18
authentications in random order. We logged all authen-
tication attempts and showed the home screen after
every successful login. We recorded the participants
using three HD video cameras in a similar setup
(Figure 2). We concluded the study with a semi-struc-
tured interview.

4.2.3. Usability study 2 results
In total we recorded 54 videos per participant (6 pass-
words × 3 methods × 3 camera views). Apart from the
videos, we analysed the data with regard to input
speed and error rate.

Input Speed. Figure 5 summarises the time needed to
authenticate for each method. Prior to analysis, we
excluded 2 out of 216 input time measurements as out-
liers (. m+ 2.5× SD). A repeated measures ANOVA
showed significant effects for input method on input
speed (F1.021,9.192 = 156.106, p , .001). Post-hoc ana-
lyses using Bonferroni correction revealed that there
was a significant difference (p , .001) in input speed
between touch-only input (M = 1677, SD = 120) and
GazeTouchPIN input (M = 10, 817, SD = 712). There
was also a significant difference (p , .001) between
touch+random input (M = 3210, SD = 124) and Gaze-
TouchPIN input (M = 10, 817, SD = 712). The third
pair (touch-only vs touch+random) was also signifi-
cantly different (p , .001).

Error Rates. The results show that the error rate of
three participants decreased using GazeTouchPIN
input as they entered more PINs. Figure 6 shows that
the more PINs participants enter using GazeTouchPIN
, the less errors occur, which suggests that there is a
learning effect. For example, 10 out of 12 participants
entered their fifth and sixth PIN correctly on their
first attempt. Participants 2 and 6 never failed, while
participants 1, 7 and 11 failed once each. Finally, partici-
pant 4 improved steadily from 4 failures at the first
GazeTouchPIN input to no failures when entering the
last PIN.

Figure 5. GazeTouchPIN requires on average significantly more time compared to touch+random and touch-only . Participants per-
formed faster over time, with a mean input time decreasing from 10.8 at the first GazeTouchPIN entry to 9.5 seconds at the sixth entry.
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Qualitative Feedback. Participants noted that the
touch+random and GazeTouchPIN were more secure
than the regular touch-only method. Despite longer
login times, all participants agreed that with some train-
ing they would be able to enter PINs even faster. This
aligns with the quantitative data, which showed that
the mean input time of the participants’ first entry
using GazeTouchPIN is 10.8 seconds, which decreased
to 9.5 seconds at their sixth entry using GazeTouchPIN
. This is a decrease of 12%, which is promising especially
because the participants were using GazeTouchPIN for
the first time. Asked for application areas, participants
voiced that they find GazeTouchPIN particularly useful
in situations where they are more exposed, such as in
public transport. Also using the approach as a second
layer of authentication for particular cases (e.g.online
banking applications, or for opening messages from a
specific person) was mentioned as an application area.
Overall while one participant reported that he would
use GazeTouchPIN for frequent phone unlocking, 10
participants reported they would use it to protect sensi-
tive data or in situations where they feel observed. One
participant explicitly mentioned that he was not too
much concerned about the security of his phone (‘My
phone isn’t that important to me’). He stated to be too
impatient for permanently using GazeTouchPIN . How-
ever, he would like to use it at ATMs to achieve a higher
level of security.

The feedback received in this study matches the input
by participants of GazeTouchPass ’s security study,
suggesting that GazeTouchPIN is attractive for secur-
ity-aware users, while less concerned users would use
it in sensitive contexts only.

5. Security evaluations

We evaluated the security of GazeTouchPass and Gaze-
TouchPIN in terms of observation resistance in three
user studies. The first two studies focus on GazeTouch-
Pass and GazeTouchPIN respectively, and both studies
cover side observation attacks and iterative observation
attacks (i.e. threat models 1 and 2 described in Section
3.3). The third security study evaluates both Gaze-
TouchPass and GazeTouchPIN against multiple obser-
vers attacks (i.e.threat model 3 described in Section
3.3). Both user studies used a within-subjects design.
We detail the independent variables of each study in
the sections below.

5.1. Security study 1: security of GazeTouchPass

The aim of this study was to analyse the security of
GazeTouchPass in terms of observation resistance
against iterative observation attacks and side obser-
vation attacks (i.e. threat models 1 and 2 as described
in Section 3.3). To evaluate the security, we used the
recordings from the preceding usability study to create
consistent conditions. Because the recordings showed
the participants of the usability study, we obtained
their consent for using these videos and screenshots
from them for further investigations and publications.
The videos were played to the security participants on
a computer screen. The security study participants
were specifically instructed to try recovering digits and
eye moves from the video to mimic an attack. While
and after observing the videos, participants were asked
to take notes of the observed digits and eye movements.

Figure 6. Number of attempts before a successful entry using GazeTouchPIN across all participants. Each participant entered 6 PINs
using GazeTouchPIN , the graph shows that users tend to enter their PIN correctly at the first attempt as they enter more PINs.
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When performing iterative observation attacks against
GazeTouchPass , participants noted the pauses between
gaze gestures and then tried to fill the gaps with digits
observed through the phone-view . Following a
repeated-measures design, participants took the role of
an attacker and watched videos of users authenticating
using GazeTouchPass . There were two independent
variables: 1) modality-switch-count (0-switches, 1-
switch, 2-switches, 3-switches) and 2) threat model
(side observation attacks, iterative observation attacks).
This means participants observed successful authentica-
tion attempts using all four possible modality-switch-
count and observed from three angles to cover both
threat models (see Camera Views angles in Figure 2).
Each participant independently attacked eight pass-
words of each condition of n-switches – half of which
were side observation attacks (i.e. using the side-view
as shown in Figure 2 Camera View C), while the others
were iterative observation attacks (i.e. using the eyes-
view and the phone-view as shown in Figure 2 Camera
View A and B respectively). In iterative observation
attacks, the experimenter alternated the order of the
observed view. This results in a total of 32 attacked pass-
words. The order of videos was randomised per partici-
pant. To avoid learning effects, no participant attacked
the same password from different views.

5.1.1. Security study 1 participants
We recruited 13 participants (6 females, 7 males),
aged between 21 and 33 years (M = 24.2,
SD = 3.4), through mailing lists. None of them had
participated in the usability study of GazeTouchPass
(Usability Study 1). Participants were compensated
with an online shopping voucher. In addition, all
participants took part in a draw for an additional
20 Euro voucher, where chances of winning increased
with the number of successfully attacked passwords.
This was done to motivate participants to put an
effort in their observation attacks.

5.1.2. Security study 1 procedure
The experimenter introduced the study procedure, the
task, and the reward mechanism. After explaining how
GazeTouchPass works, participants had the chance to
try and get acquainted with the app themselves. They
were then given draft papers and the experimenter
started playing the videos. They were given blank papers
to take notes during the observation attacks if they wish,
then the experimenter started playing the videos. Based
on their observations, participants provided up to three
guesses for each authentication attempt they observed.
Each participant was allowed to watch the video
sequences relevant to the current password once on a

24 ′′ monitor. The study was concluded with a final
questionnaire and a short semi-structured interview.
In total, participants performed 13× 32 = 416 attacks
with up to three guesses each.

5.1.3. Security study 1 results
In the following we report on the successful attacks
against GazeTouchPIN as well as on results of the ques-
tionnaire and semi-structured interviews.

Successful Attacks. For each attack, we calculated the
Levenshtein distance between the guesses and the correct
password. The use of Levenshtein distance to measure
closeness of observation attacks is the standard in pre-
vious work (Katsini et al., 2020; von Zezschwitz et al.,
2015). Only the guess closest to the correct password
was considered for further analysis. Moreover, we calcu-
lated the overall success rate in attacking passwords for
each number of modality switches and for each attack
type (iterative observation attack vs side observation
attack). An attack is considered successful if at least one
guessmatched the correct password. Figure 7 summarises
the successful attack rate against passwords with different
modality-switch-count, observed through the side-view or
through the phone-view and the eyes-view.

A two-way repeated-measures ANOVA showed sig-
nificant main effects formodality-switch-count on attack
success (F3,36 = 3.86, p , .05) and for the view angle on
attack success (F1,12 = 51.05, p , .0001). There were no
interaction effects between modality-switch-count and
view angle (p . .05).

This suggests that distance between the guesses and the
correct password depends on the modality-switch-count.
Post-hoc analysis with Bonferroni correction showed a
significant difference (p , .05) in attack success for pass-
words with 0-switches (M = 1.25, SD = 0.14) compared
to those with 3-switches (M = 1.9, SD = 0.1). This
means guesses against passwords with 0-switches in
modality (baseline) are closer to the correct pattern than
those with 3-switches. The other pairs did not show any
significant differences (p . .05).

Post-hoc analysis with Bonferroni correction revealed
that there was a significant difference (p , .0001) in
attack success for passwords attacked iteratively
(M = 1.38, SD = 0.138) compared to passwords attacked
from the side (M = 1.913, SD = 0.123). This suggests
that guesses against passwords observed iteratively (threat
model 2) are closer to the correct password compared to
those observed from the side (threat model 1).

Qualitative Feedback. When asked in the question-
naire how easy it was to attack passwords for each
view (5-point scale; 1=Very easy; 5=Very difficult), par-
ticipants found side attacks to be very difficult (Med = 5,
SD = 0.66), while iterative attacks were perceived to be
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easier (Med = 3, SD = 0.96). In the interviews, eight
participants expressed that attacking touch-only and
gaze-only passwords was easiest. One participant
reported it was easier to break passwords with consecu-
tive inputs of the same modality. There was a disagree-
ment among participants regarding which modality
was more difficult to observe. While some found gaze
input to be more difficult to observe than touch input,
others found gaze input easier. Participants reported
side observation attacks to be harder as it was difficult
to concentrate on the eyes and the display at the same
time. Three participants said that they had trouble
finding the right order during iterative observation
attacks. They also reported that it is harder to attack
passwords entered quickly. It is expected that users will
authenticate faster as they use the system more often,
making the system even more secure.

5.2. Security study 2: security of GazeTouchPIN

This study also followed a repeated-measures design
with the aim to analyse the security of GazeTouchPass
in terms of observation resistance against iterative
observation attacks and side observation attacks
(i.e.threat models 1 and 2 as described in Section 3.3).
As done in Security Study 1, we used the videos that
were collected from the participants of the usability
study of GazeTouchPIN . The participants had con-
sented to using the videos with their faces in publi-
cations and further user studies. In total, each
participant of Security Study 2 attacked 24 PIN entries
– 8 for each input method: touch-only , touch+random,
and GazeTouchPIN . Participants performed half of the
24 attacks using the side-view and the other half using

the phone-view . For iterative attacks against the Gaze-
TouchPIN method, participants were provided both the
eyes-view as well as the phone-view . Half of these
started by the eyes-view , while the other half started
with the phone-view . When observing GazeTouchPIN
, participants noted down the gaze gestures and the pairs
of digits selected every time.

For any two observations against GazeTouchPIN ,
there is a 1

2n chance (where n is the number of PIN digits)
that the phone-view and the eyes-view match. Hence,
we randomly assigned the views such that there was a
1
16 chance for a match (given that we used 4-digit
PINs). The order of PINs and methods was randomised
per participant. To avoid learning effects, no participant
attacked the same password from different views.

5.2.1. Security study 2 participants
We recruited 18 participants (5 females) aged between
18 and 36 (M = 24.6, SD = 4.54) through mailing
lists. We employed a reward system identical to the
one used in GazeTouchPass ’s security study (Security
Study 1 described in Section 5.1). None of the partici-
pants of the security study had participated in the
usability study of GazeTouchPass.

5.2.2. Security study 2 procedure
We followed the same procedure and rewardmechanism
used for GazeTouchPass ’s security study (see Section
5.1.2). We additionally allowed participants to examine
the layouts at any time during the study (see Figure 1).

5.2.3. Security study 2 results
In the following we report on the successful attacks as
well as on interview results and a questionnaire.

Figure 7. Success rate when attacking passwords entered using GazeTouchPass in Security Study 1. Passwords with higher modality-
switch-count are significantly more secure against observations compared to those with fewermodality-switch-count . Side attacks are
always less successful than iterative attacks due to the difficulty of continuously switching focus back and forth from the eyes to the
touchscreen.
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Successful Attacks. In total, participants performed
18× 24 = 432 attacks, providing three guesses for
each. We calculated the Levenshtein distance in the
same manner as in GazeTouchPass ’s security study.
Figure 8 shows the rate of successful attacks against
PINs entered using each of the methods, observed either
through the side-view or through the phone-view and
the eyes-view. All three graphs show that the success
rate is lower for GazeTouchPIN.

A repeated-measures ANOVA showed significant
main effects for input method (F2,34 = 42.36,
p , 0.001) on attack success. This suggests that the dis-
tance between the guesses and the correct PIN depends
on the input method. No significant main effects were
found for the number of PINs attacked so far.

Post-hoc analysis using Bonferroni correction revealed
that there was a significant difference (p , .001) in the
distances for PINs entered using GazeTouchPIN
(M = 1.88, SD = 0.11) compared to touch-only PINs
(M = 0.65, SD = 0.1). There was also a significant differ-
ence (p , .005) in the distances for PINs entered using
GazeTouchPIN (M = 1.88, SD = 0.11) compared to
touch+random PINs (M = 1.37, SD = 0.13). The final
pair was also significantly different (p , .001). This
means that guesses against PINs were statistically closer
to the correct PIN in case of touch-only PINs, followed
by touch+random PINs. However guesses against Gaze-
TouchPIN PINs were the least similar to the correct one.

Questionnaire and Interviews.All participants reported
that attacking multimodal PINs (GazeTouchPIN )
through the side-view was the most difficult task.
Some attributed this to the difficulty of focusing on the
eyes and phone in parallel, particularly if the users
were fast in entering their password. ‘It is just very
hard to concentrate on two numbers, look at his eyes,
then again at the screen’, said P0. One participant
noted that she had to keep track of: (1) the user’s
finger, (2) which layout is displayed and (3) the eye
movements. Another participant seconded her, adding
that he found it particularly difficult when the user
used multiple fingers when entering the password. ‘It
is only possible when there is a long gap between row
selection and eye movements’, said P2, implying that
GazeTouchPIN ’s entry speed is also influential. Mul-
tiple participants indicated that shuffling the layout con-
fused them. After the study, participants were asked how
easy it was to attack the passwords for each method and
view (5-point scale; 1=Very easy; 5=Very difficult). Note
that they were not aware of how many of their attempts
were successful during the study. Table 2 summarises
the median scores of the perceived difficulty. It can be
seen that side attacks are the hardest, with a median
score of Very Difficult.

5.3. Security study 3: security of GazeTouchPass
and GazeTouchPIN against multiple observers

The main goal of this study is to investigate how the mul-
tiple observers threat model (threat model 3) influences
the security of GazeTouchPass and GazeTouchPIN. We
used the videos recorded during usability studies 1 and
2 (Section 4) and used in security studies 1 and 2.

5.3.1. Security study 3 design
The study was designed as a repeated-measures exper-
iment with a single independent variable: the password
type. As explained above, GazeTouchPass passwords
can consist of multiple switches in input modality.
Hence, we included four conditions: 3-switches, 2-
switches, 1-switch, and 0-switches. The last condition
refers to having no switches in modalities when entering
the password i.e. a unimodal password. This means that
when two observers attack GazeTouchPass with 0-
switches, they will be both observing the same modality.
This was considered a baseline in our experiment. The
fifth and last condition is GazeTouchPIN. Each team
of attackers observed 3 passwords of each type. This
means that each team attacked 15 passwords in total
(3 passwords × 5 password types). The conditions
were counter-balanced using a latin square.

5.3.2. Security study 3 participants
We invited 20 participants (9 females, 11 males) in pairs
of two to take the role of an attacker team. The study
was advertised through mailing lists.

5.3.3. Security study 3 procedure
We invited participants in teams of two. The exper-
imenter explained the study and asked the participants
to sign a consent form. Participants were then explained
how GazeTouchPass and GazeTouchPIN worked and
had the chance to try them out, and watch videos show-
ing how they work. Each team then watched two video
clips on two different 17 ′′ displays (see Figure 9). Both
videos started at the same time. The participants were
free to examine the layouts (Figure 1) and to take
notes at any time during the study. The pair were
allowed to communicate at any time, for example, to
discuss strategies. The pair were positioned at opposite
sides of the table, to simulate an attacker observing
the user’s face, and another one observing the user’s
touchscreen. After each video, the participants had
time to discuss their solution and could state up to
three guesses for the password. We concluded with a
short semi-structured interview.
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5.3.4. Security study 3 results
We report on the successful attacks and the results of the
semi-structured interviews. Successful Attacks A
repeated-measures ANOVA with Greenhouse–Geisser
correction showed a significant main effect for the pass-
word type (F1.87,16.82 = 4.32, p , .05 ). Post-hoc analysis
with Bonferroni correction revealed a significant differ-
ence between GazeTouchPass with 0-switches and
GazeTouchPass with 2-switches (p , .05). Although
the other pairs were not significantly different
(p . .05), we found a tendency for more successful
guesses against GazeTouchPass with no switches, com-
pared to GazeTouchPass with 1-, 2-, and 3-switches (see
Figure 10). This result matches previous work (Khamis
et al., 2016), which reported that the more switches in a
GazeTouchPass password exist, the harder it is to
observe. Furthermore, we found that GazeTouchPIN
is less secure than many configurations of GazeTouch-
Pass. This is expected since the random layout is no
longer as effective when two attackers are observing
the user at the same time.

Qualitative Feedback In the short interviews, the par-
ticipants indicated their relationship to the other
attacker in their team. In six teams, the attackers were
friends, in three of them they were acquaintances, and
the remaining pair were strangers. We did not find
any effect of the relationship between the attackers on
successful guesses. Participants reported that they
devised strategies with their partners. For example,
they would count in their heads to try to estimate the
positions of the inputs from the other modality. The
attacker who observed the touch input was able to see
whether the successful login screen was shown after
the last touch input, or if the last touch input was fol-
lowed by a pause. This gave the attackers hints about
the positions of the observed inputs.

6. Discussion

6.1. GazeTouchPass is secure against side
observation attacks

GazeTouchPass passwords that use 2- and 3-switches are
particularly secure against side observation attacks (only
15% success rate), even when compared to GazeTouch-
PIN due to the fact that attackers cannot predict whether
the user’s next input is gaze-based or touch-based in case
of GazeTouchPass . When using GazeTouchPIN , how-
ever, side observation attacks performed slightly better
(17% success rate) as the adversary expects gaze input
right after each touch input.

In case of multiple observers, GazeTouchPass is less
secure but still better than the baseline and than

Figure 8. Success rate of attacking PINs entered using the three methods in Security Study 2. GazeTouchPIN provided the highest
level of security among the tested methods, in particular against iterative attacks.

Table 2. Perceived difficulty (1=Very easy, 5=Very difficult) of
attacking the three methods in each of the views.

Touch-only
Touch

+random GazeTouchPIN

Phone Sideview Phone Side Phone+Eyes Side

Median 2.00 3.00 3.00 4.00 3.00 5.00
StDev 1.00 0.90 0.80 0.65 1.35 0.98

Notes: Participants found it most difficult to attack touch+random and Gaze-
TouchPIN from the side. Their perception of the difficulty of iterative
observation attacks was misplaced because there was a 1

2n chance of seeing
a matching phone-view and eyes-view .
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GazeTouchPIN when using 3-switches. This can be
seen in Table 3, which shows a comparison between
the success rates in security study 3 compared to
security studies 1 and 2. The reason behind the higher
success rate against the baseline condition (Gaze-
TouchPass with 0-switches) is that both attackers
saw the same video. Attackers were able to discuss
their guesses afterwards, and this allowed them to
fine-tune the three submitted guesses based on two
observations instead of only one. Attackers performed
better against the other conditions of GazeTouchPass
as well due to the same reason: overall, the team
had higher exposure to the password and was able
to better identify the pauses between the inputs
from different modalities. For example, observing
Touch(1), Pause, Touch (2) in the phone view (Figure
2 Camera B) suggests that there is one or more gaze
inputs in between those two touch inputs. These
pauses in turn help the attackers identify how to
order their observations. At the same time, the main
reason behind incorrect guesses against GazeTouch-
Pass is the ordering of inputs; in the vast majority

of cases, the correct inputs were observed by the
attackers, but the guessed order was incorrect (e.g.
guessing Touch(1), Gaze(Left), Touch(2), Gaze(Right)
instead of Gaze(Left), Touch(1), Touch(2), Gaze
(Right)).

6.2. GazeTouchPIN is secure against iterative
observation attacks

GazeTouchPIN is superior over GazeTouchPass in pro-
tecting against iterative observation attacks (only 4.2%
success rate) because of the randomness of the layout.
Iterative observation attacks against GazeTouchPass
are complicated but still possible (23%–46%), given
that the adversary paid attention to all inputs and
noted the gaps in-between.

Attacks by multiple observers are effective against
GazeTouchPIN due to the parallel observations. Gaze-
TouchPIN was very secure against iterative observation
attacks because each time the user enters a digit, the lay-
out could have been different. This made it unfeasible
for attackers to identify which layout the user is

Figure 9. This work proposes and evaluates the use of gaze and touch for user-centred authentication on smartphones. This multi-
modal approach increases resilience to shoulder-surfing attacks as attackers need to observe the user’s eyes and the touchscreen
simultaneously to find the password. GazeTouchPass (left) enables passwords with multiple switches between input modalities during
authentication. In the example, the user authenticates using: Left-3-Right-4. GazeTouchPIN (right) uses multiple modalities and com-
plicates attacks by using one of two random layouts during PIN entry. In the example the user enters the digit 6 two times in a row.

Figure 10. The figure shows that, similar to previous work, the Levenshtein distance is larger in case of 2- and 3-switches. This means
that GazeTouchPass is more secure when more switches exist in the password. GazeTouchPIN is far less secure against our threat
model compared to previously studied ones, since the random layout is no longer effective when two attackers observe simul-
taneously. Overall, while success rates are much higher in the multiple observers threat model compared to models studied in the
past, both schemes still outperform the baseline.
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responding to when observing their eye movements.
This security advantage is no longer present in case of
parallel multiple observers attacks; the attacker observ-
ing the screen could note down the touch input and
the shown layout, while the other one observes the
gaze input. Combining the observations in this case
would be trivial.

6.3. Usability and security trade-off

GazeTouchPass and GazeTouchPIN are significantly
more secure than the baselines. It should be noted
that all previous conclusions are based on the assump-
tion that the attacker knows how the observed system
works. The threat models we propose are realistic but
also ensure optimal attacking conditions. Additionally,
participants of the security studies were highly motiv-
ated and trained. This is evidenced from their perform-
ance against the baselines which was as high as 75% (see
Figures 7–10). This is comparable to results from
state-of-the-art schemes; attackers of ColorSnakes
(Gugenheimer et al., 2015) and XSide (De Luca et al.,
2014) achieved 75% and 53% success rate against the
respective baselines.

On the downside, both GazeTouchPass and Gaze-
TouchPIN suffer from lower usability compared to
the less secure baselines. Mean authentication time
using GazeTouchPass is approximately 3.1 seconds,
and ≈200 more milliseconds for passwords with 2
switches. While this is slightly slower compared to
the baseline and common schemes such as PINs. For
example, von Zezschwitz, Dunphy, and De Luca
(2013) report 1.5 seconds for PINs and 3.13 seconds
for lock patterns. GazeTouchPass is faster than some
of the security-optimised state-of-the-art and multimo-
dal authentication systems (see Table 4). In terms of
usability, input time is faster using GazeTouchPass
compared to GazeTouchPIN. We expect that partici-
pants will authenticate faster as they use the systems
more frequently due to training effects. We already
observed preliminary evidence of this; mean authenti-
cation time using GazeTouchPIN decreased from 10.8
to 9.5 seconds as participants used it more often.
Since users unlock their phones almost 50 times a
day (Harbach, Luca, and Egelman,2016), we

recommend the use of GazeTouchPIN in sensitive con-
texts rather than on regular basis. Overall, and as sev-
eral participants indicated, multimodal authentication

Table 3. Compared to previous evaluations of GazeTouchPass and GazeTouchPIN (Sections 5.1.3 and 5.2.3), the multiple attackers
threat model results in more successful attacks against the said schemes.

GazeTouchPass

Number of attackers 0-switches (baseline) 1-switch 2-switches 3-switches GazeTouchPIN

One attacker 63% 46% 37% 23% 4%
Two attackers 97% 80% 57% 67% 67%

Table 4. Comparison of GazeTouchPass and GazeTouchPIN with
state-of-the-art schemes using gaze-based authentication (De
Luca, Denzel, and Hussmann,2009; De Luca, Weiss, and
Drewes,2007; Forget, Chiasson, and Biddle,2010; Kumar et al.,
2007; Liu et al., 2015; Sluganovic et al., 2016), input-splitting
(De Luca et al., 2014) and multiple modalities (Bianchi et al.,
2011; Bianchi, Oakley, and Kwon,2011, 2012).

System Input time
Successful
attacks

GazeTouchPass
3-switches (Side) 3.1 s 15%
3-switches (Iterative) 3.1 s 23%
2-switches (Side) 3.3 s 15%
2-switches (Iterative) 3.3 s 37%
1-switches (Side) 3.0 s 21%
1-switches (Iterative) 3.0 s 46%
0-switches (Side) 3.0 s 25%
0-switches (Iterative) 3.0 s 63%
GazeTouchPIN (Side) 10.82 s 17%
GazeTouchPIN (Iterative) 10.82 s 4%
Authentication schemes that use gaze
EyePassShapes (De Luca, Denzel, and
Hussmann,2009)

12.5 s 42%

EyePIN (De Luca, Weiss, and
Drewes,2007)

48.5 s 55%

CGP (Forget, Chiasson, and
Biddle,2010)

36.7 s

EyePassword (Kumar et al., 2007) 9.2 s–12.1 s
Liu et al. (2015) 9.6 s
EyeVeri (Song et al., 2016) 5 s–10 s
Sluganovic et al. (2016) 5 s
Multimodal authentication schemes
PhoneLock (Bianchi et al., 2011) 12.2 s–28.2 s
SpinLock (Bianchi, Oakley, and
Kwon,2011)

10.8 s–20.1 s

TimeLock (Bianchi, Oakley, and
Kwon,2012)

10 s

ColorLock (Bianchi, Oakley, and
Kwon,2012)

10 s

GazeGestureAuth (Abdrabou et al.,
2019)

19.34 s–20.63 s

Authentication Schemes that split input
CueAuth (gaze) (Khamis, Trotter, et al.,
2018)

26.46 s 0.03%

XSide (De Luca et al., 2014)
front 1-switch start 3.9 s 38%
front 1-switch end 3.7 s 13%
front 2-switches 3.8 s 28%
back 1-switch start 3.8 s 19%
back 1-switch end 4.1 s 16%
back 2-switches 4.0 s 9%

Note: GazeTouchPass shows a balance between security and usability, with
lower authentication times and less successful attack rates, while Gaze-
TouchPIN shows superior resistance to iterative attacks while maintaining
good usability. This suggests that multimodal schemes are promising for
secondary authentication, where users feel observed or want to protect
sensitive data.
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can be particularly useful as a secondary authentication
mechanism that users can choose to opt to when feel-
ing observed (e.g. public setting), or when accessing
critical data (e.g. online banking).

6.4. Comparison to state-of-the-art

GazeTouchPass demonstrates a balance between secur-
ity and usability, with lower authentication times and
less successful attack rates compared to related authen-
tication systems, while GazeTouchPIN shows superior
resistance to iterative observation attacks while main-
taining reasonable usability (Table 4).

We compared our systems against gaze-based
authentication schemes that, like GazeTouchPass ,
transform the password space (De Luca, Denzel, and
Hussmann,2009; De Luca, Weiss, and Drewes,2007;
Forget, Chiasson, and Biddle,2010; Kumar et al., 2007;
Khamis, Oechsner, et al., 2018), as well as with systems
that, like GazeTouchPIN , obscure numerical passwords
using gaze input (Liu et al., 2015; De Luca, Weiss, and
Drewes,2007; Khamis, Trotter, et al., 2018; Abdrabou
et al., 2019). We found that GazeTouchPass and Gaze-
TouchPIN are faster and more secure than desktop-
based systems (Table 4). GazeTouchPass is faster than
the system proposed by Liu et al. (2015). Its security
was not formally evaluated, however, it uses a password
space of 4n only, while our systems use 12n and 10n

respectively. Although the security of PhoneLock (Bian-
chi et al., 2011), SpinLock (Bianchi, Oakley, and
Kwon,2011), TimeLock (Bianchi, Oakley, and
Kwon,2012) and ColorLock (Bianchi, Oakley, and
Kwon,2012) was not evaluated in a way comparable to
our studies, our systems require a shorter authentication
time (Table 4).

XSide is based on input-splitting (De Luca et al.,
2014), where a double-sided touchscreen is used for
password entry. Our systems, on the other hand, can
work on off-the-shelf mobile devices without any
additional hardware. XSide is faster than GazeTouch-
PIN , but slower than GazeTouchPass . Similar to our
systems, the number of switches in a password entered
using XSide influences its security; in most cases Gaze-
TouchPass and GazeTouchPIN are more resistant to
observations (Table 4).

A further distinction of our work is that we consider
advanced shoulder-surfing tactics, which allowed study-
ing the security of our systems in worst-case scenarios
that are nevertheless realistic. For example, the security
study of XSide considered side observation attacks in
case of split input, while iterative observation attacks
could be more successful.

6.5. Splitting the attacker’s attention is key to
resisting observation attacks

Although multiple observers perform better than single
ones when attacking GazeTouchPass and GazeTouchPIN
compared to single observers, their success is significantly
worse than when attacking the baseline (see Table 3). This
means that while these schemes are not as effective against
multiple attackers as they are against single observers,
they are still more secure than the baseline.

6.6. Password selection strategies

Multimodal passwords entered using GazeTouchPass
were remembered by the vast majority of participants
after 5 days. It is also expected that with frequent use,
users would find it easier to recall passwords. By exam-
ining the practical password space of GazeTouchPass we
find that users exploit different features of GazeTouch-
Pass that make it more secure. There was a focus on
selecting passwords with multiple switches in modality,
and also on ones starting with gaze input; the security
studies participants reported these were the most
difficult to break. GazeTouchPIN is based on the widely
used PINs, hence its users will not have to memorise
new passwords.

6.7. Attacking strategies

When performing iterative observation attacks, partici-
pants in GazeTouchPass ’s security study employed a
gap-filling strategy when combining observations. In
addition to noting the gestures and the digits, partici-
pants also noted the pauses when observing either the
eyes-view or the phone-view . This approach, however,
does not always serve its purpose. We logged multiple
cases where participants observed all inputs but guessed
an incorrect order (e.g. 9-1-right-left instead of 9-right-
1-left). Security-aware users can in fact exploit the gaps
to confuse observers; a user could intentionally intro-
duce an unneeded gap before providing the next
entry. This strategy was far easier to implement in
case of multiple attackers. Our participants reported
that they split the tasks. The attacker who observed
the touch input was usually responsible for determining
the last input and allowed the team to gather insights
about the number of modality switches.

Attackers of GazeTouchPIN noted inputs in a similar
manner. Rather than observing the two selected digits,
four participants wrote down one of them and noted
whether it was on the right or on the left. They then
checked the layouts (Figure 1) to determine which row
was selected in which layout. However these strategies
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were less effective for iterative observation attacks against
GazeTouchPIN , where 69 out of 72 attacks failed because
of the low probability ( 12n) of seeing amatching phone-view
and eyes-view at different authentication attempts. Itera-
tive observation attacks were highly successful however,
in the presence of multiple attackers. In case of side obser-
vation attacks, attackers reported they had to switch focus
back and forth between the eyes and the touchscreen,
which was particularly harder as users authenticate faster.
Side observation attacks performed worse on GazeTouch-
Pass due to the unpredictability of the switches in input
modality.

In all cases, participants of the security studies
reported that as users authenticate faster, the harder it
is to attack the passwords. This is another positive
aspect of multimodal authentication, since results indi-
cate that users are expected to input passwords faster as
they use the system more often.

6.8. Other threat models

Although we considered advanced threat models that
assume a better-than-naive attacker, there are various
other threat models that our system can be compared
against.

Similar to iterative observation attacks, insider
attacks (Wiese and Roth,2016) combine multiple partial
observations. But instead of observing the entire pass-
word, the insider model relies on using partially col-
lected observations to reduce the entropy of the
currently observed password when performing brute
force attacks. In input-splitting schemes, such as XSide
(De Luca et al., 2014) and our systems, an insider
could focus on inputs observed from one view and
guess the other inputs. For example, observing one
input in a 4-digit PIN reduces the space from 104 to
103. While a single observation on any system reduces
the password space dramatically, our systems still have
the advantage of not leaking the order of observed
input from any of the views. For example, by observing
a gaze gesture from the eyes-view on GazeTouchPass ,
the attacker would not know where in the password
the gesture is with respect to the other inputs.

Another interesting direction for future work is to
investigate combined threat models. For example, an
attacker could observe a user’s gaze input while authenti-
cating using GazeTouchPIN or GazeTouchPass, and then
perform a thermal attack (Abdelrahman et al., 2017) or a
smudge attack (Aviv et al., 2010) to infer touch input.

While it was infeasible to address all possible threat
models in our studies, we intend to study other models
in future work. Implementations of our schemes will
lock users out after multiple failures to counter guessing

attacks, and a minimum number of switches will be
required by GazeTouchPass.

6.9. Limitations and future work

Video-based gaze estimation has its known limitations;
varying light conditions, reflections of eye glasses and
heavy makeup can affect the quality of eye tracking
(Majaranta and Bulling,2014), and some eye tracking
algorithms rely on the presence of a full face in the cam-
era’s view, which is not always the case in day-to-day
smartphone use (Khamis, Baier, et al., 2018). For this
reason we opted for simple eye gestures that can be
robustly detected by front-facing cameras. However,
we acknowledge that the use of better eye tracking
equipment (e.g. infrared light sources and sensors) can
enable a wider range of eye movements to be detected
robustly. A direction for future work is to run our sys-
tems on infrared-supported mobile devices. Moreover,
as processing power of mobile devices improve,
mobile-based gaze tracking approaches that have been
used for offline processing (e.g.Huang et al., 2017;
Wood and Bulling.,2014) can be employed in real-time.

Although mean authentication times using both sys-
tems are comparable to state-of-the-art systems, they
are generally longer compared to the more popular
and insecure PINs and patterns. The trade-off between
usability and security has been discussed in previous
works. Therefore we believe that multimodal authenti-
cation, being significantly more secure, offers users a
tangible benefit in protecting their sensitive data, and
would recommend it for secondary authentication
which security-aware users can opt for in sensitive con-
texts. A future long-term study where participants use
the systems over a number of weeks will reveal how
learning effects will impact input time.

6.10. Guidelines for multimodal authentication
on mobile devices

Based on our experimentation with two concepts for
multimodal authentication, and based on the results of
the five user studies, we developed the following
recommendations:

. Exploit data from new and improved sensors on
mobile devices to improve the usability and the secur-
ity of authentication. By using gaze as an additional
modality for authentication, we improved the secur-
ity of authentication significantly as shown in
Table 4. The usability of our systems is expected to
improve using the newly available depth sensors in
front-facing cameras. As newer sensors are integrated
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into smartphones, researchers and practitioners are
encouraged to exploit them to improve authentica-
tion albeit by processing the data locally on the
smartphone (see a discussion of ethical consider-
ations in Section 6.13).

. Minimize the number of layouts when introducing
random elements into the authentication procedure.
While prototyping GazeTouchPIN, we wanted to
add a random element to ensure that observing the
eyes-view and the phone-view on two different
occasions does not leak the PIN. Had we displayed
a completely randomised layout, participants would
have had to spend more time to find the digits they
wish to enter. Instead, randomly showing one of
two layouts supports learning effects and hence
usability and potentially memorability.

. Offer multimodal authentication as security add-on
for specific tasks or accounts. Feedback from our par-
ticipants shows that while users may not appreciate
the increased security at the expense of usability for
their daily smartphone unlocking, they are willing
to use our systems for sensitive tasks that they do
not perform as often, such as booting the phone, or
accessing online banking.

. Tailor multimodal authentication to the user’s location
and environment. Many of our participants reported
they would use our systems in situations where they
feel vulnerable. For example, users are more likely to
be observed while using public transportation, hence
we need to consider the three threat models detailed
above. In other locations, such as at home, weaker
threat models might be more appropriate.

. Increasing the number of switches from one modality
to another improves security. Switching from gaze to
touch input, or from touch to gaze input in Gaze-
TouchPass improves observation resistance signifi-
cantly. This is because each switch requires the
attack to switch attention, thereby complicating the
attack. In fact, similar results were observed when
introducing elements to authentication that require
attackers to switch attention (e.g. see RubikAuth
Mathis et al., 2021 and XSide De Luca et al., 2014).

6.11. Contributions in practice

The guidelines we presented are useful to practitioners
who wish to employ multimodal authentication on
their systems. We implemented and evaluated our sys-
tems for mobile devices. However, some recommen-
dations apply to other platforms as well e.g. ATMs,
public displays or mixed reality headsets.

6.12. Open challenges for practical application

We evaluated the usability of our systems in the lab. A
long-term user study in the wild may reveal interesting
insights into daily usage of multimodal authentication.
Some challenges of gaze interaction on mobile devices
may be present when authenticating using gaze in
daily scenarios. These challenges include: the visibility
of the user’s eyes, accuracy in shaky environments,
lighting conditions, and the privacy implications of col-
lecting gaze data (Khamis, Alt, and Bulling,2018).

As discussed in Section 6.9, the user’s eyes may not
always be fully visible to the front-facing camera due to
clothing, reflections, or the user’s holding posture (Khamis,
Baier, et al., 2018; Huang, Veeraraghavan, and Sabhar-
wal,2017). This is amplified by the fact that many gaze esti-
mation algorithms rely on first detecting the user’s full face.
More work is needed to maximise gaze estimation accu-
racy even if only part of the face (or one eye) is visible.

Users are often on the move while interacting or
unlocking their smartphones. This means that a lot of
the gaze data will be inaccurate due to shaky environ-
ments. More research is needed to study how well
gaze-based authentication works in these scenarios,
and develop methods to guide users into a setting (e.g.
an ideal holding posture) to allow accurate gaze esti-
mation. This is also needed to overcome the problem
of lighting conditions; sunlight may make depth data
less reliable, whereas dark environments complicate
gaze estimation in RGB videos.

Finally, another challenge is that even though the aim
of this work is to improve security, the collection of gaze
data has privacy and ethical implications. We discuss
those in the next section.

6.13. Ethical considerations

In our work, we estimated the gaze gestures on the
mobile devices directly. Another approach is to outsource
the gaze estimation process to a remote server (Khamis,
Alt, and Bulling,2018). Practitioners may be tempted to
do this as gaze estimation is a CPU heavy task that
may cause the smartphone to heat up and drain its bat-
tery. However, doing so may have significant impli-
cations on privacy. Gaze data can reveal very sensitive
information about the user (Katsini et al., 2020). For
example, the users personality traits, mental state,
emotions, and visual interests can be determined from
their eye movements (Katsini et al., 2020). Thus, we
strongly recommend that real-world implementations
of multimodal authentication process gaze data locally
on the smartphone without sending the gaze data else-
where to ensure privacy and avoid unethical exploitation

2078 M. KHAMIS ET AL.



of the user’s sensitive data. Another ethical issue is that as
smartphones’ capability of accurate gaze estimation
improves, the users’ smartphones will start to pose a priv-
acy risk on bystanders. This is because gaze behaviour
may be captured by the smartphone cameras, which are
increasingly improving in terms of lens angle and by
incorporating depth sensors. Our studies met the ethics
regulations of Ludwig Maximilian University of Munich,
where the studies took place.

7. Conclusion

We proposed to combine gaze and touch for multimo-
dal user authentication on mobile devices by exploiting
the front-facing cameras readily available in these
devices for estimating users’ eye movement. We pre-
sented two novel authentication schemes that enhance
security by requiring attackers to observe both input
modalities. While GazeTouchPass (multimodal pass-
words) is more resilient to side observation attacks
because of having to quickly switch focus between
phone and eyes, GazeTouchPIN (multimodal selection
of PINs) is more superior against iterative observation
attacks due to the random choice of layout. We demon-
strated that both schemes are significantly more secure
than current singlemodal schemes, including
attacks that involve multiple observers. These findings
underline the potential of using gaze input to increase
security against basic and advanced shoulder-surfing
attacks. We expect these advantages to multiply with
further advances in remote gaze estimation on mobile
devices.
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Appendix. Participant demographics

Table A1. Details of the demographics of our participants.
Usability Study 1 Usability Study 2 Security Study 1 Security Study 2 Security Study 3

P1 female 22 P1 male 23 P1 male 33 P1 male 18 P1 female 32
P2 female 22 P2 male 26 P2 female 22 P2 male 26 P2 male 36
P3 male 27 P3 female 27 P3 male 25 P3 male 21 P3 female 23
P4 male 35 P4 male 27 P4 female 21 P4 male 25 P4 male 25
P5 female 27 P5 male 31 P5 male 23 P5 male 28 P5 female 21
P6 female 24 P6 male 24 P6 male 25 P6 male 22 P6 female 24
P7 female 30 P7 female 29 P7 male 29 P7 male 19 P7 male 24
P8 female 23 P8 male 21 P8 female 25 P8 male 23 P8 male 28
P9 male 27 P9 male 21 P9 female 21 P9 female 23 P9 male 19
P10 female 21 P10 male 22 P10 male 22 P10 female 21 P10 female 19
P11 female 23 P11 male 19 P11 female 23 P11 female 27 P11 male 26
P12 male 25 P12 male 25 P12 female 23 P12 male 28 P12 female 22
P13 female 22 P13 male 22 P13 female 32 P13 male 27

P14 male 36 P14 female 22
P15 female 18 P15 female 39
P16 male 23 P16 male 24
P17 male 26 P17 male 22
P18 male 23 P18 female 23

P19 male 25
P20 male 24
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