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Figure 1: Missing data is inevitable in mobile eye trackers. HAGI is a novel multi-modal approach for gaze data imputation
that exploits the close coordination between eye and head movements. Input to our method is gaze data with missing values
and time-aligned head movements captured using sensors readily available in mobile eye trackers (Left). HAGI uses a novel
head-conditional diffusion model to impute the missing gaze data (Right) with lower mean angular error and is more realistic

than previous methods.

ABSTRACT

Mobile eye tracking plays a vital role in capturing human visual
attention across both real-world and extended reality (XR) environ-
ments, making it an essential tool for applications ranging from
behavioural research to human-computer interaction. However,
missing values due to blinks, pupil detection errors, or illumination
changes pose significant challenges for further gaze data analy-
sis. To address this challenge, we introduce HAGI - a multi-modal
diffusion-based approach for gaze data imputation that, for the first
time, uses the integrated head orientation sensors to exploit the in-
herent correlation between head and eye movements. Our method
includes a head-movement feature extraction module alongside a
novel hybrid feature fusion mechanism that effectively integrates
gaze and head motion features at multiple levels. Additionally, we
introduce a tailored loss function to enhance gaze imputation ac-
curacy further. Extensive evaluations on the large-scale Nymeria,
Ego-Ex04D, and HOT3D datasets demonstrate that HAGI consis-
tently outperforms conventional interpolation methods and deep
learning-based time-series imputation baselines, reducing mean an-
gular error by up to 22%. Furthermore, statistical analyses confirm
that HAGI produces gaze velocity distributions that more closely
match actual human gaze behaviour than baselines, ensuring more
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realistic gaze imputations. Our method paves the way for more
complete and accurate eye gaze recordings in real-world settings
and has significant potential for enhancing gaze-based analysis and
interaction across various application domains.

CCS CONCEPTS

« Computing methodologies — Artificial intelligence; Ma-
chine learning; - Human-centered computing;

1 INTRODUCTION

Mobile eye tracking has become an essential tool for studying
human behaviour [28, 80], attention [59, 69], cognition [42, 51],
and decision-making processes [42, 88], and has emerged as an
attractive modality for interaction in real-world environments
[45, 52, 53, 84]. Also, latest commercial head-mounted extended
reality (XR) devices, such as the Apple Vision Pro [4], Meta Quest
Pro [56], Microsoft HoloLens 2 [58], and Project Aria Glasses [15]
are equipped with integrated eye tracking functionality.

A fundamental challenge in working with gaze data recorded
using mobile eye trackers is the prevalence of missing values aris-
ing from blinks, pupil detection failures, occlusions, or illumination
changes [9, 63, 65]. Missing values can significantly degrade data
quality and, in the worst case, render gaze recordings unusable for
further analysis and downstream applications [20]. Prior research



has largely adopted two strategies to address this issue: discarding
missing values entirely [37, 38, 60] or imputing them using inter-
polation methods, such as linear [5, 10, 36, 55] or nearst neighbour
interpolation [97]. While discarding data ensures data integrity, it
results in discontinuities, making gaze data unsuitable for appli-
cations requiring temporal completeness and consistency, such as
for training machine learning models [27, 28, 30]. Data imputation
preserves continuity but fails to accurately reconstruct naturalistic
gaze trajectories or match the velocity profile of real human eye
movements [20, 55]. As such, none of these existing approaches
is fully satisfying and there remains a critical need for advanced
gaze imputation techniques that can handle missing gaze data in a
robust, continuity-preserving, and biologically plausible manner.

We introduce HAGI - a novel multi-modal approach that lever-
ages the close coordination between eye and head movements (also
known as eye-head coordination) for gaze imputation. Our method
exploits the fact that along with gaze data, the latest mobile eye
trackers and XR headsets are also readily equipped with sensors for
head tracking, such as inertial sensors or vision-based approaches
for self-localisation and mapping. Unlike prior methods that treat
gaze as a standalone signal, HAGI is the first to integrate head
movement information to infer missing gaze values. Specifically,
we propose (1) a head movement feature extraction module that
encodes both head rotation and translation, (2) a novel hybrid fea-
ture fusion mechanism combing early fusion and skip fusion that
effectively combines head and gaze signals at multiple levels, and
(3) a loss function designed to improve gaze imputation accuracy.
We evaluate HAGI on three large-scale gaze datasets that cover
different everyday indoor and outdoor activities: Nymeria [54], Ego-
Ex04D [19], and HOT3D [7]. Results of these evaluations show that
our approach significantly outperforms both interpolation-based
methods and deep learning-based time-series imputation baselines.
Our method reduces mean angular error (MAE) by up to 22%, and
yields gaze velocity distributions that more closely resemble real hu-
man gaze movements than other methods. Our main contributions
are as follows:

(1) We introduce HAGI, the first multi-modal diffusion-based ap-
proach for gaze imputation that exploits the coordination be-
tween eye and head movements.

(2) We propose a novel head-movement feature extraction module
and a hybrid feature fusion mechanism, and a tailored loss
function that integrates head and gaze data for robust gaze
imputation.

(3) We conduct extensive evaluations on three large-scale egocen-
tric gaze datasets, demonstrating that HAGI outperforms exist-
ing methods—achieving up to a 22% reduction in mean angular
error—and generates gaze velocity distributions that closely
resemble real human gaze dynamics, ensuring more naturalistic
and biologically plausible imputed gaze trajectories.

By leveraging eye-head coordination, HAGI enables more re-
liable gaze-based analysis and interaction in mobile eye-tracking
applications. Our approach enhances the quality of gaze data in
real-world scenarios, making it particularly beneficial for applica-
tions in XR, behavioural research, and gaze-based human-computer
interaction.
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2 RELATED WORK

2.1 Gaze Imputation

The task of gaze imputation, which involves reconstructing missing
values within recorded gaze data, remains an underexplored area
of research. The predominant approach to handle missing values in
most prior studies has been to exclude instances containing missing
gaze data entirely [1, 3, 6, 8, 23, 87]. Among the limited works that
do address missing data, classical interpolation techniques have
been the primary method of choice. Notably, Huang and Bulling [36]
applied linear interpolation to fill gaps in gaze data lasting less than
50 milliseconds, while Mannaru et al. [55] similarly employed lin-
ear interpolation for recovering missing gaze data in time-domain
analyses. Alternative interpolation methods, such as nearest neigh-
bours interpolation [97], unsupervised Expectation-Maximization
algorithm [47], have also been explored in this context. However,
as emphasised by Grootjen et al. [20], interpolation methods often
struggle to accurately replicate the velocity distribution of real gaze
data. On the other hand, machine learning techniques have also
been applied to gaze super-resolution - a special type of gaze im-
putation. Jiao et al. [38] introduced SUPREYES, an implicit neural
representation learning method for gaze super-resolution. How-
ever, it is important to note that SUPREYES primarily operates
on low-resolution gaze data without any missing values, focusing
on resolution enhancement rather than imputing missing data at
arbitrary positions. In stark contrast to previous methods, HAGI
can impute missing gaze data at any arbitrary location while pre-
serving the natural dynamics of human gaze behaviour by closely
mimicking the gaze velocity distribution.

2.2 Eye-head Coordination

Eye-head coordination refers to the coordinated movements be-
tween the eyes and the head and has been extensively investigated
in the areas of cognitive science and human-centered computing.
Specifically, Stahl studied the process of gaze shift and found that
the amplitude of head movement is proportional to the amplitude
of gaze shift [79]. Fang et al. investigated the gaze fixation process
and revealed that eye-head coordination plays a significant role
in visual cognitive processing [16]. Hu et al. analysed eye-head
coordination in immersive virtual environments and discovered
that human eye gaze positions are strongly correlated with head ro-
tation velocities [29, 30, 34]. Sidenmark et al. focused on the process
of gaze shift in virtual reality and identified the coordination of eye,
head, and body movements [74]. Emery et al. studied the process
of performing various tasks, e.g. reading, drawing, shooting, and
object manipulation, in virtual environments and identified general
eye, hand, and head coordination patterns [14]. Recently, inspired
by the strong link between eye and head movements, researchers
started to use both eye and head information in many applications
and have achieved great success [18, 31, 33, 44, 46, 76, 90]. For
example, Gandrud et al. predicted users’ locomotion directions in
virtual reality using their gaze directions and head orientations [18].
Sidenmark et al. [75] and Kyt6 et al. [46] employed users’ eye and
head movements in virtual reality to improve the accuracy of tar-
get selection. Kothari et al. classified eye gaze events, i.e. fixations,
pursuits, and saccades, from the magnitudes of eye and head move-
ments [44]. Hu et al. predicted eye fixations in the future using
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historical gaze positions and head rotation velocities [27] and pro-
posed to recognise the task a user is performing from user’s eye
and head movements [28].

Despite the fact that both eye and head motions are beneficial
for many applications, they have not been studied together for
eye gaze imputation yet. And existing gaze prediction methods
[27, 34] cannot be directly applied to gaze imputation, since they
are only able to predict future gaze, but imputation requires a
bi-directional method (e.g., filling in the previous gaze samples
according to the observation). To the best of our knowledge, we
are the first to demonstrate that eye-head coordination can be
successfully transferred to the task of gaze imputation and lead to
significant performance gains.

2.3 Time-Series Imputation

Since gaze data can be represented as a time series, in theory, exist-
ing time-series imputation methods can be directly applied to gaze
data imputation. Deep learning-based methods have been shown to
outperform statistical approaches in prior time-series imputation
studies. Existing methods explore various neural network architec-
tures, including Convolutional Neural Networks (CNNs), Recurrent
Neural Networks (RNNs), Transformers, and Multilayer Percep-
trons (MLPs). For example, TimesNet [89] transforms the input
time series into the frequency domain and processes it using a CNN
model; BRITS [11] employs a bidirectional RNN to capture tempo-
ral patterns in time series data; iTransformer [49], Informer [98],
and Crossformer [96] utilise different attention mechanisms within
Transformers to better model time-series dynamics; DLinear [92]
applies MLPs for computationally efficient time-series imputation.
Generative methods such as Variational Autoencoders (VAEs), Gen-
erative Adversarial Networks (GANSs), and diffusion models have
also been explored for time-series imputation, including US-GAN
[57], GP-VAE [17], and CSDI [82].

While these methods offer powerful general-purpose solutions,
they are typically designed for single-modal signals and do not
account for the unique characteristics of gaze data or the availability
of complementary head movement signals in mobile eye tracking.
In contrast, HAGI is specifically tailored to the gaze imputation task
and is, to our knowledge, the first to explicitly incorporate head
movement information as an auxiliary modality. Our approach is
the first method that is specifically geared to the gaze imputation
task and that leverages head movement information to enhance
gaze imputation performance.

3 BACKGROUND
3.1 Gaze Data Imputation

Let X = {x1,x2,....Xx.} € RIXK pe a sequence of gaze directions,
where L represents the length of the gaze sequence, determined
by the sampling rate of the eye tracker and the duration of data
collection. In our case, we set K = 2, as each gaze direction at any
given time step is represented by (pitch, yaw). Additionally, we
define M = {mq, my, ..., mp} € {0, 1}L><1 to denote an observation
mask, where m; = 1 indicates that the eye tracker produces a valid
output for x;, while m; = 0 denotes that x; is invalid. Gaze data
imputation is the task of estimating the gaze directions for invalid
values within X by leveraging the valid gaze observations in X.

3.2 Conditional Score-based Diffusion Model
for Time-Series Imputation (CSDI)

Denoising Diffusion Probabilistic Models (DDPMs) [25] are a class
of generative models that have achieved state-of-the-art perfor-
mance across a range of domains, including image generation [25],
audio synthesis [43], and more recently, eye movement synthe-
sis [39, 40]. These models learn to generate realistic data by revers-
ing a gradual noising process, enabling fine-grained control over
the generative trajectory.

Tashiro et al. [82] extended the diffusion framework to time-
series imputation by proposing Conditional Score-based Diffusion
for Imputation (CSDI). CSDI models the conditional distribution
of missing values given the observed portions of the time series.
It introduces a conditional training scheme in which a masking
function stochastically selects observed and unobserved regions
of the input during training, allowing the model to learn flexible
imputation strategies across various missing patterns.

Since gaze data is also time-series, CSDI can be adapted for
gaze data imputation. CSDI is trained in a self-supervised manner.
During training, given an input time series xg, CSDI randomly
generates an observation mask that separates xg into the observed
part x5° and the target part requiring imputation x(®. As with
the original DDPM, CSDI consists of two processes: The forward
process is a Markov chain that progressively adds noise to x(t)“, to
transform xéa into random noise following a Gaussian distribution.
The forward process is defined as follows:

q (x| %) = N (s Ve, (1= ) 1) (1)
where t denotes the time step, and a; is a constant determined by
a predefined noise schedule. More specifically,

= Varxp® + (1 - ar)e (2)
where € ~ N(0,I) is random Gaussian noise.

The reverse process aims to start from pure Gaussian noise,
similar to x1%, and iteratively denoise it to reconstruct a sample
resembling the original data distribution. Since, in imputation, we
additionally have conditional information from the observed se-
quence x;°, the reverse process is defined as follows:

1 x9)])
)

where 0 represents the trainable parameters of the neural network,

Po (Xt 1 |Xt . X{ )_N(xt 1’F’6'(X txg° >U€(Xt

1—(Zt
\/1—0{;

and dg(xl{“, t | xg%)1 is a constant defined by the noise schedule.

1
t t
He(Xta,t | XSO) = a_t (Xta - €9 (Xt St X ) . @)

The term €9 (xt St xg ) in Equation 4 is a trainable denoising deep

learning model. The training objective is to minimise the difference
between the prediction and the actual added noise in Equation 2:

), 5)

4 HEAD-ASSISTED CONDITIONAL DIFFUSION
MODEL FOR GAZE IMPUTATION
Previous studies have demonstrated that human eye movements are

strongly correlated with head movements, a phenomenon known
as eye-head coordination [14, 28, 34, 74, 75, 79]. Most commercially

Lnoise = “Et — €9 Xt ot X
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Figure 2: The training pipeline of HAGI. The detailed architecture of the denoising diffusion (Green box) is shown in Figure 3.

available head-mounted devices equipped with eye-tracking ca-
pabilities, such as the Apple Vision Pro [4], Meta Quest Pro [56],
Microsoft HoloLens 2 [58], or Project Aria Glasses [15], are readily
fitted with sensors for tracking users’ head movements. Unlike
gaze data, which inevitably contains missing values [22, 65], head
movements are recorded continuously without any missing data,
provided the sensor remains operational. The key idea of HAGI is to
exploit the close coordination between head and eye movements to
impute missing values in gaze data. At its core, HAGI uses a novel
head-conditioned diffusion model with a tailored loss function for
gaze imputation (see Section 4.2). Additionally, we introduce a ded-
icated head feature extractor that both encodes head rotation and
translation, and a hybrid fusion mechanism to effectively merge
the head and gaze features at different levels (see Section 4.3), en-
hancing the accuracy and realism of gaze imputation.

4.1 Problem Definition and Data Preparation

We extend the definition of gaze data imputation outlined in Sec-
tion 3.1. For each gaze sequence X = {xi,x3,...,xL}, we have a
corresponding sequence of time-aligned head movements H =
{h1, hy, ..., hy }. The task is to predict the gaze directions for missing
values within X by leveraging both the head movements H and the
existing gaze observations in X. Since head movements correspond
to the movements of head-mounted devices, we obtain H by pro-
cessing the SLAM poses of the head-mounted device. Let us denote
Tvlv orld, tracker € SE(3) as the pose of the mobile eye tracker in the
world coordinate system at time step [. The head movement at time
step [ is represented as the relative transformation matrix between
the SLAM poses at two consecutive time steps:

— LI+1  _ [ —1—pl+1
hy = ATtracker - (Tworld, tracker) Tworld, tracker O

Additionally, for each gaze sample x;, represented as (pitch, yaw),
we normalise the values to the range [0, 1] using a sine transforma-
tion before further processing.

4.2 HAGI Diffusion Process

At the heart of HAGI is a conditional diffusion model that performs
gaze imputation by leveraging the strong correlation between eye
and head movements. While diffusion models have shown promise
in general time-series imputation tasks (Section 3.2), they have
not been adapted for multi-modal signals exhibiting biomechanical
coordination such as gaze and head motion.

To this end, we design a head-conditioned diffusion framework
that integrates head movement signals throughout the denoising
process. Let xo be the input gaze sequence, with x§° and x(* rep-
resenting the observed and target parts, respectively, separated
by a randomly generated binary observation mask. The forward
process of HAGI remains identical to that of CSDI [82]. Given that
H represents the head movements corresponding to xo, the reverse
process of HAGI extends Equation 3 as follows:

Po (x;‘il | x4a, XSO,H) =N (xf‘il;/,tg (xi“,t | xgo,H),ag (xf“,t | XSO,H) I)

™)

As with standard denoising diffusion models [25, 35, 43, 73, 82,

93], one of the training objectives of HAGI is to accurately predict
the added noise at diffusion time step ¢:

t
Lnoise = Het — €9 (Xta,t | X(C)O,H)Hz ®)
Since we transform gaze data into sine space for normalisation,
the model does not understand how gaze moves in Euclidean space.
Therefore, we introduce an additional loss function, L¢,,, that min-
imises the mean squared error between the imputed gaze xé“ at

diffusion time step t and the ground truth gaze target Xé“ in Eu-
clidean space. More specifically,

R xi“ -1 —a0 (xi“,t | XSO,H)
xéa = 9)
Var

Leu =

arcsin(xéa) - arcsin(xé“) (10)

2
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Algorithm 1 HAGI Training Procedure

1: Input: gaze data X, corresponding head movements H, total
diffusion step T

2: repeat
3 Xo = sin(X)
4 M ~ Random Mask Generator
5: xgo =MOXxg
6 xéa:(l—M)on
7 t ~ Uniform({1,...,T})
8 e~ N(0,I)
9 xi? = \/atx(t)a +(1—ar)e
10: Lnoise = Het - € (xi“,t | xgo,H)Hz
e M VTE(x e )
: 0 Vor
12: Ley = ”arcsin(xéa) - arcsin(x(t)“) )
13: Take gradient descent step on

14: Vo(Lnoise + ALeu)
15: until converged

The final training objective of HAGI is given by:
L = Lyoise + ALey (11)

Figure 2 shows the HAGI training pipeline. Algorithm 1 and
Algorithm 2 summarise HAGI’s training and sampling procedures.

Algorithm 2 HAGI Sampling Procedure

1: Input: gaze data X, corresponding head movements H, obser-
vation mask M

2 x5 = M @ sin(X)

3. Sample X3¢ ~ N(0,1)

4 fort=T,T-1,...,1do

. ta co |y = L (xia _ 1-ar ta co g
5 po (%34t | x°, >_az N x4t | 0,

6: Sample ngl ~ Po (xfﬁl | xi“,xg",H) using Equation 7
7: end for

8: Output: arcsin(x}?)

4.3 HAGI Architecture

Figure 3 shows an overview of the HAGI architecture which is
represented as the green denoising diffusion box in Figure 2. The
primary challenge in designing the model architecture is to ef-
fectively integrate information from head movements H with the
observed gaze sequence x°. To address this, we propose a head
feature extractor that encodes head rotation and translation (green
box in Figure 3) and a novel hybrid fusion mechanism, incorporat-
ing both early and skip fusion, to merge head and gaze features.
This design enables HAGI to better capture the correlation between
head and gaze information.

As outlined in Sections 3.1 and 4.1, the input gaze data is rep-
resented as a sequence of (pitch, yaw) with shape (L, 2), where
L denotes the sequence length. The input gaze data is then di-
vided into the observed gaze x;° € RE*2 and the noisy target part
xi% e RI*2 using a randomly generated mask and noise addition,

as described in Algorithm 1. Following prior work [40, 82], we
concatenate the gaze-related inputs x{° and x{* along a new dimen-
sion. The concatenated input, now of shape (2, L, 2), is subsequently
passed through a 1D convolutional layer with a kernel size of one
to upsample it into an intermediate gaze feature of shape (C, L, 2),

where C denotes the number of channels.

Head feature extractor. The input head movements H € RLX4X3
consist of a sequence of transformations k; = [R, t] € R**3, where
R € R3*3 denotes head rotation and t € R1*3 refers to head trans-
lation. Following common practice in processing transformation
matrices [48, 91], we first flatten each transformation into a 12-
dimensional vector and apply Fourier encoding, a frequency-based
positional encoding, to the flattened H € RL*12, The encoded fea-
tures are then passed through a fully connected layer with two
output features, followed by a 1D convolutional layer with a kernel
size of one, reshaping the head features to match the intermediate
gaze feature shape (C, L, 2).

Hybrid Fusion Mechanism. Similar to popular diffusion model
architectures [40, 43, 72, 82, 93], HAGI consists of N residual layers
with 2C residual channels. We use early fusion by concatenating
the gaze and head features along the channel dimension. The fused
feature of shape (2C, L, 2) is the input to the first residual layer.
Each residual layer consists of a temporal Transformer that applies
self-attention along the time dimension L and a spatial Transformer
that applies self-attention along the feature dimension K = 2. This
dual-transformer design has been widely adopted in time-series
imputation tasks [62, 82]. However, unlike prior works focusing on
single-modal time-series data, our approach captures spatial and
temporal correlations in-between and across head and gaze.

Since the head feature is concatenated with the gaze feature
and fed into the first residual layer, information from head move-
ments may degrade as it propagates through multiple residual lay-
ers due to operations such as nonlinear activation functions. To
mitigate this, inspired by the skip connections in ResNet [24], we
introduce a skip fusion mechanism that integrates the head fea-
tures extracted by our head feature extractor into each residual
layer. Specifically, we concatenate the head feature with other com-
monly used side information in time-series analysis, including time
embedding [39, 82, 85, 99] which is obtained by applying stan-
dard positional encoding along the time-axis L, feature embedding
[39, 82] that is a categorical feature embedding for the feature-axis
(pitch, yaw), and the observation mask on the channel dimension
[2, 82].

A 1D convolutional layer in each residual layer maps this com-
bined information to a shape of (4C, L, 2), while another 1D con-
volutional layer maps the Transformer output to the same shape.
These two representations are fused via element-wise addition. Fol-
lowing [40, 43, 82], the fused tensor is then passed through a gated
activation unit and two 1D convolutional layers to produce the
input for the next residual layer and the skip connections. With
shape (2C, L, 2), the final residual layer output is projected by two
1D convolutional layers into the predicted noise, maintaining the
same shape (L, 2) as the input gaze data. All convolutional layers in
HAGI are used for up- and down-sampling tensors at the channel
dimension; we set the kernel size to one for all these layers.
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Figure 3: Overview of HAGI architecture. The model takes the observed gaze sequence x;’ and head movement sequence H
as input. A head feature extractor (green box) encodes H into a latent representation. Gaze and head features are then fused
using a novel hybrid fusion mechanism that combines early fusion (concatenation before residual blocks) and skip fusion (via
residual connections). The fused representation is processed by a denoising diffusion model consisting of residual blocks with
spatial and temporal Transformers. This design enables HAGI to capture eye-head coordination for accurate and realistic gaze

imputation.

We follow prior work [39, 40, 43, 82] to employ positional en-
coding to transform the diffusion step t into a 128-dimensional em-
bedding. This embedding is passed through three fully connected
layers and summed with the fused head and gaze tensor before
being processed by the Transformers in each residual layer.

5 EXPERIMENTS
5.1 Datasets

To assess the performance of HAGI across diverse real-world sce-
narios, we evaluated our method on three publicly available, large-
scale datasets that include mobile eye-tracking and head movement
recordings captured during everyday activities:

Nymeria [54] is the world’s largest in-the-wild human motion
dataset, featuring over 300 hours of multimodal recordings from 264
participants engaged in everyday activities across 50 distinct indoor
and outdoor environments. The dataset includes 30 Hz gaze data,
head motion, wrist motion, body motion, and natural language de-
scriptions. Due to its large scale and coverage of varied real-world
settings, we used Nymeria for training and evaluation. Specifically,
we selected recordings with well-calibrated personalised gaze data,
SLAM poses from the eye tracker. We randomly partitioned these

recordings into training (80%, 593 recordings, 145.8 hours), valida-
tion (5%, 38 recordings, 8.4 hours), and test (15%, 111 recordings,
28.7 hours) sets.

Ego-Exo04D [19] is a large-scale multimodal dataset that provides
synchronised egocentric and exocentric recordings of skilled hu-
man activities, covering activities such as cooking, football, music,
dance, basketball, bicycle repair, and rock climbing. The egocentric
recordings contain 30 Hz gaze data and SLAM-derived head poses
from head-mounted devices. To assess the generalisability of HAGI
across diverse indoor and outdoor activities, we used all 72 egocen-
tric recordings (4.6 hours) with well-calibrated personalised gaze
data for cross-dataset evaluation.

HOT3D [7] is an egocentric multimodal dataset for studying
hand-object interactions in indoor environments. Similar to the
other two datasets, it includes gaze data and head motion record-
ings. Since handling tools and interacting with objects are funda-
mental aspects of everyday activities, we incorporated HOT3D for
cross-dataset evaluation. Our evaluation used all 111 (3.48 hours),
containing well-calibrated personalised gaze data and SLAM poses.
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5.2 Evaluation Settings

Baselines. We compared HAGI against several baseline approaches.
These include widely used interpolation methods for gaze impu-
tation as well as state-of-the-art deep learning-based time-series
imputation techniques.

e Head direction: Given the strong correlation between head and
eye movements, head direction was widely used as a proxy for
gaze direction in prior work [30, 32, 61, 78].

e Linear interpolation and Nearest interpolation: These two
interpolation techniques are the most commonly used methods
for handling missing values in eye-tracking research [22, 41].

e iTransformer [49]: A Transformer-based model designed for
multiple time-series tasks, including time-series imputation.

e DLinear [92]: A multilayer perceptron (MLP)-based method that
models time-series trends using a moving average kernel and a
seasonal component.

e TimesNet [89]: Converts 1D time-series data into 2D tensors
with Fast Fourier Transformation and processes them using a
CNN-based architecture. It was designed for multi-time-series
tasks.

e BRITS [11]: A bidirectional RNN-based approach for time-series
imputation.

e CSDI [82]: A diffusion-based generative model for time-series im-
putation, demonstrating superior performance over GAN-based
[57] and VAE-based [17] methods in various imputation tasks.

Input duration. We chose five seconds as the duration for all
inputs, same as prior gaze-based deep learning models [40, 50].
We clipped the gaze recordings in the Nymeria dataset into non-
overlapped five-second segments according to the time stamps in
the atomic motion descriptions. For the Ego-Exo04D and HOT3D
datasets, we ignored the data within the very first and last second in
each recording to ensure the data quality and clipped the recording
into non-overlapping five-second segments. Following prior work
[50], all segments with more than 5% invalid gaze samples were
discarded. To ensure the model only learns to reconstruct real gaze
movements, all the remaining invalid gaze samples were excluded
from the loss computation during training.

Data loss ratio. As in general time-series imputation, we masked
a certain proportion of valid gaze data for evaluating imputation
performance. The selected data loss ratios were informed by blink
duration statistics and missing data ratios reported in prior research:
Blinks occur approximately 20 times per minute, with each blink
lasting between 150-450 milliseconds [64, 81]. Consequently, up to
10% missing data can be attributed solely to blinks [65]. Addition-
ally, prior studies have reported missing data ratios ranging from
20% to 60% [26, 66, 71]. Moreover, an empirical research shows that
consecutive missing values last 1,325 milliseconds on average with
the standard deviation of 4,076 milliseconds, and the majority of the
missing segments are shorter than 1 second [21]. Based on these
findings, we evaluated HAGI under missing data conditions of 10%,
30%, and 50%. Furthermore, to assess HAGI’s robustness in extreme
scenarios, we also tested it with 90% missing data. Since the longest
blink duration (450 ms) corresponds to approximately 10% of our
five-second input window, we primarily evaluated HAGI on long
blinks using a 10% missing ratio. Specifically, for each five-second

gaze trajectory in our test sets, we randomly masked a continuous
10% segment of valid data. For 30%, 50%, and 90% missing ratios, we
simulated real-world data loss by ensuring that each masked seg-
ment lasted at least 150 milliseconds, corresponding to the shortest
blink duration. This strategy ensured that the missing data patterns
realistically reflected natural gaze data loss.

Evaluation metrics. We used two metrics for evaluation:

e Mean Angular Error (MAE): MAE is the most commonly used
evaluation metric in previous gaze estimation research [30, 32, 34,
94, 95]. It measures the angular difference (in degrees) between
the predicted and the ground truth gaze vectors. Specifically,
we first converted the gaze direction from the unit spherical
coordinate system (pitch, yaw) to a 3D Cartesian vector (x, y, z)
and then computed the MAE as follows:

J .
MAE = - Z arccos ( I gAJ ) (12)
] 19511451

where ] is the total number of missing frames, and g; and g;
represent the ground truth gaze vector and the predicted gaze
vector, respectively.

o Jensen-Shannon divergence (JS): While MAE evaluates the accu-
racy of gaze direction reconstruction, it does not assess whether
the imputed gaze movements exhibit realistic human gaze dy-
namics. To address this, we incorporated JS divergence, following
prior work on eye movement synthesis [40, 67, 68]. JS divergence
measures the similarity between the velocity distribution of im-
puted and real human gaze movements. Let P and Q be the
distributions of the predicted and ground truth gaze velocities at
missing frames, respectively. JS divergence is defined as:

IS(PIIQ) = 5KL (P

%(P+Q))+%KL (Q‘ %(P+Q)), (13)

where KL denotes the Kullback-Leibler (KL) divergence. JS diver-
gence ranges between zero and one, with lower values indicating
better performance.

A good gaze imputation method should achieve lower JS on the
basis of lower MAE.

Implementation details. All datasets used in our experiments
provide gaze data at 30 Hz, and we set the input duration to five
seconds, resulting in a total sequence length of L = 150. For HAGI,
we set the residual layers to N = 4, with C = 64 channels and eight
attention heads per Transformer. The diffusion process consisted of
T = 50 steps, using a cosine noise schedule with a minimum noise
level of 1 — a1 = 10™% and a maximum noise level of 1 — a1 = 0.5.
We set A = 1.5 for Ly,. The training was conducted for 500 epochs
with a batch size of 256, using the Adam optimizer with an initial
learning rate of 1073, which decayed to 107* at epoch 375 and
further to 107> at epoch 450.

Since CSDI [82] can be considered an ablated version of HAGI
without head movement information, we ensured a fair compar-
ison by training CSDI with the same hyperparameters as HAGI
using its official implementation. For other deep learning-based
time-series imputation baselines, we leveraged PyPOTS [12], a pop-
ular Python toolbox that includes various time-series imputation
methods [13]. We modified only the input shape while keeping



Nymeria [54] Data loss ratio

10% (Long Blinks)  30%  50%  90%

Head direction 23.32 23.43 2344 23.44
Linear 4.96 6.88 9.68 11.54
Nearest 5.29 6.52 8.34 12.61
iTransformer [49] 8.75 11.10 16.57 24.05
DLinear [92] 12.12 12.25 1297 14.01
TimesNet [89] 19.53 18.59 20.32 2291
BRITS [11] 10.25 11.98 14.06 17.58
CSDI [82] 4.72 5.90 7.44 10.54
HAGI (Ours) 3.67 455 577 8.53

Table 1: Mean angular error (MAE) of gaze imputation across
different methods and data loss ratios on the Nymeria [54]
test set. The best results are marked in bold, and the second-
best are underlined.

Nymeria [54] Data loss ratio

10% 30% 50% 90%

Head direction  0.139  0.137 0.139  0.146

Linear 0.129 0.078 0.089 0.150
Nearest 0.081 0.073 0.103 0.135
CSDI [82] 0.044 0.042 0.037 0.030

HAGI (Ours) 0.042 0.040 0.035 0.017

Table 2: Jensen-Shannon divergence (JS) of gaze imputation
across different methods and data loss ratios on the Nymeria
[54] test set. The best results are marked in bold, and the
second-best are underlined.

the optimal hyperparameters provided for the PhysioNet2012 [77]
dataset and trained all models with the same number of epochs and
batch size. All deep learning-based methods were trained on the
Nymeria training set, and we selected the best-performing model on
the validation set for the final evaluation. For classical interpolation
methods, we used the built-in functions from the SciPy library [86].
As a baseline head direction proxy, we filled in missing frames with
(pitch, yaw) = (0, 0). Since HAGI and CSDI are generative models
and do not produce deterministic outputs, we followed [2, 82] and
used the median of 100 generated samples for evaluation.

5.3 Gaze Imputation Results

Quantitative results. Table 1 shows the mean angular error (MAE)
of gaze imputation across different methods and missing ratios for
a within-dataset evaluation on the Nymeria test set. As can be seen
from the table, HAGI outperforms all baselines across all missing
ratios, achieving improvements of 22% on long blinks (3.67° vs.
4.72°), 23% on 30% missing data (4.55° vs. 5.90°), 22% on 50% missing
data (5.77° vs. 7.44°), and 19% on 90% missing data (8.53° vs. 10.54°)
compared with the second-best method. In contrast, except for
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CSDYJ, time-series imputation methods did not achieve performance
comparable to traditional interpolation methods. This suggests that
these time-series imputation methods cannot be directly adapted to
gaze data without modification. Consequently, we excluded these
methods from further evaluations (see Appendix A if interested).

Table 2 shows the Jensen—Shannon divergence (JS) of gaze im-
putation across different methods and data loss ratios, also on the
Nymeria test set. The velocity distribution of HAGI-imputed gaze
achieved the lowest JS across all experimental settings, indicating
its superior ability to preserve natural gaze dynamics. In contrast,
traditional interpolation methods perform substantially worse in
replicating human-like eye movements than diffusion-based ap-
proaches.

We then conducted a cross-dataset evaluation on the Ego-Exo4D
and HOT3D datasets to assess whether HAGI can generalise to
diverse everyday settings. The results are shown in Table 3. Simi-
lar to the results on the Nymeria dataset, despite HAGI not being
trained or fine-tuned on these datasets, it achieved the lowest MAE
across all methods and data loss ratios, with a minimum improve-
ment of 11%, a maximum improvement of 21%, and an average
improvement of 18% over the second-best method. Furthermore,
HAGI also attained the lowest JS among all methods, suggesting
that its imputed gaze velocity distribution is the closest to the real
human gaze velocity distribution among the baselines. Moreover,
it is worth noting that in the cross-dataset evaluation, the absolute
MAE across different missing ratios did not decrease compared
with the within-dataset results on the Nymeria dataset (see Table
1). This suggests that HAGI learns robust correlations between eye
and head movements that generalise well across datasets featur-
ing diverse everyday activities and environments, demonstrating
strong generalisation performance and reflecting the benefits of
training on a larger and more diverse dataset.

Qualitative results. We present four sample gaze imputation re-
sults from the cross-dataset evaluation for four methods with rel-
atively low MAE in Figure 4. As shown in the figure, HAGI bene-
fits from incorporating head movement information, resulting in
imputed gaze trajectories that follow a similar trend and are spa-
tially closer to the ground truth human eye movements (see the
results of 30% and 50% missing ratios in Figure 4). In the scenario
with 90% missing values, HAGI imputed gaze samples are more
closely aligned with the ground truth. This suggests that leverag-
ing head movements provides valuable contextual information for
gaze imputation, enabling HAGI to generate more naturalistic and
human-like gaze trajectories compared to baseline methods, align-
ing with results of MAE in Table 3. In contrast, the gaze trajectories
imputed by traditional interpolation methods are visually dissimilar
to real human eye movements. This visual assessment aligns with
the JS values reported in Table 3. Although CSDI achieved a JS
score comparable to HAGI in Table 3, its imputed gaze data exhibits
substantial spatial deviation from real human eye movements.

5.4 Ablation Study

Head rotation and translation. The evaluation results so far show
that incorporating head information enables HAGI to achieve supe-
rior performance over single-modal baseline approaches. However,
as discussed in Section 4.3, the input head movements comprise
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Mean angular error (MAE) Jensen—Shannon divergence (JS)

Dataset Ego-Exo04D HOT3D Ego-Ex04D HOT3D
Data loss ratio 10% 30% 50% 90% 10% 30% 50% 90%  10% 30% 50% 90%  10% 30% 50% 90%

Head direction 25.82 25.76 25.88 25.82 23.63 23.81 2370 2373 0.126 0.125 0.124 0.131 0.148 0.148 0.147 0.145

Linear 392 554 790 929 387 564 780 898 0.094 0.08 0.073 0.135 0.277 0.102 0.096 0.148
Nearest 418 518 6.68 10.13 414 523 6.61 9.86 0.062 0.066 0.081 0.121 0.080 0.081 0.100 0.135
CSDI [82] 378 478 607 891 3.67 469 585 828 0.042 0.041 0.033 0.026 0.052 0.051 0.042 0.029

HAGI (Ours) 3.06 380 486 737 3.01 391 499 7.34 0.040 0.041 0.033 0.024 0.049 0.050 0.040 0.021

Table 3: Cross-dataset evaluation results: Mean angular error (MAE) and Jensen-Shannon divergence (JS) of gaze imputation
across different methods and data loss ratios on the Ego-Exo04D [19] and HOT3D [7] datasets. The best results are marked in
bold, and the second-best are underlined.
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Figure 4: Four examples of gaze imputation results at different missing ratios (10%, 30%, 50%, 90%) using different methods in
the cross-dataset evaluation. The bottom row shows the visualisations of ground truth human eye movements.

rotation and translation. It remains unclear how head rotation and ablated versions of HAGI: one that receives only head rotation
head translation separately contribute to gaze imputation perfor- matrices as input and another that receives only head translation
mance. To gain further insight into this question, we trained two vectors.



The results are shown in Table 4. Since prior work [39, 40] and
our previous findings demonstrated that diffusion-based approaches
effectively model gaze velocity distributions, we report only the
MAE in our results. Compared to CSDI, which does not use head in-
formation, HAGI trained with only head rotation and HAGI trained
with only head translation achieved lower MAE across all settings
and datasets. This suggests that both head rotation and transla-
tion are correlated with human eye gaze and are both important
to achieve performance improvements. Furthermore, HAGI rota-
tion consistently outperforms HAGI translation, suggesting that
head rotation contributes more to gaze imputation performance
than head translation. The full HAGI, trained with the complete
head transformation matrices, outperforms both ablated versions,
demonstrating its ability to leverage the full range of head motion
for enhanced gaze imputation accuracy.

HAGI components. We finally conducted an ablation study to
show the effectiveness of our different design choices for HAGI.
Table 5 presents the MAE results for ablated versions of our method
across different data loss ratios on the Nymeria, Ego-Ex04D, and
HOT3D datasets. Early fusion is the most naive approach to integrat-
ing head information extracted from the head feature extractor. As
can be seen from the table, it consistently surpasses CSDI, a model
without the head feature extractor, across all evaluation settings,
indicating the effectiveness of the proposed head feature extrac-
tor. However, HAGI with early fusion only consistently achieved
the highest MAE among all its ablated versions across all settings.
The proposed skip fusion mechanism reduces the MAE, achieving
an additional 5% improvement on average compared with the ver-
sion using only early fusion. Furthermore, with the proposed loss
function Ly, the full HAGI consistently outperformed the version
employing only the hybrid fusion mechanism across all settings,
with an average improvement of 2%. These results underline the
importance of the proposed components within HAGI for achieving
the reported gaze imputation performance.

6 DISCUSSION

6.1 Performance

What all of our evaluations show is that HAGI not only achieves
superior MAE reductions but also generates gaze trajectories that
more faithfully resemble natural human eye movements, highlight-
ing its robustness and effectiveness in real-world applications. Our
method consistently outperforms baseline approaches both quanti-
tatively (see Tables 1, 2, and 3) and qualitatively (see Figure 4) for all
considered data loss ratios and datasets. In terms of mean angular
error (MAE), HAGI reduces MAE by an average of 19.34% compared
with the previous state-of-the-art method. Notably, Table 1 and Ta-
ble 3 show that HAGI's MAE on 30% missing values is comparable
to the MAEs of baseline methods on only 10% missing data, and
its MAE on 50% missing values is similar to the MAEs of baseline
methods on 30% data loss. This suggests that in real-world scenar-
ios, HAGI can impute gaze data with an additional 20% missing
values while maintaining existing methods’ performance level. This
finding is significant as it shows not only the effectiveness of our
method on benchmarks but also the concrete benefits it provides
for practical mobile eye-tracking applications.
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Unlike MAE, which tends to increase with higher levels of miss-
ing data, the Jensen-Shannon (JS) divergence of HAGI decreases as
the missing ratio increases. We compute gaze velocity distributions
using the numpy . histogram function with bins=100 across all set-
tings. However, the resulting absolute JS values are not directly
comparable across missing ratios or datasets. For example, at 90%
missingness, the ground-truth velocity distribution is considerably
broader than that at 10%, with the latter effectively forming a subset
of the former. Applying the same number of bins to both leads to
differing bin widths, which in turn affects the scale of JS divergence.
This makes direct cross-ratio or cross-dataset comparisons of JS
scores inappropriate. Nonetheless, within each dataset and missing
ratio, comparisons across methods remain valid. HAGI consistently
achieves the lowest JS divergence in all such settings, indicating
that it generates gaze trajectories with the most plausible velocity
distributions among all evaluated methods.

As shown in Table 1, existing time-series imputation models that
are not based on diffusion perform worse than even standard inter-
polation techniques when applied to gaze data. This supports prior
findings [39] that diffusion models are better suited to modelling
gaze velocity distributions. Non-diffusion methods often overfit
to slow eye movements, such as fixations, which dominate real-
world gaze recordings. While augmenting non-diffusion baselines
with head movement information is technically feasible, it is un-
likely to yield significant improvements, as the underlying distri-
bution of gaze velocities remains unchanged. We therefore focus
on diffusion-based approaches and demonstrate that integrating
head input within this framework yields further improvements in
performance.

6.2 Head Rotation vs. Translation

To investigate the independent contributions of head rotation and
head translation to gaze imputation, we conducted an ablation
study. The results indicate that gaze imputation benefits from head
rotation and translation; however, head rotation exhibits a stronger
correlation with human gaze than head translation (Table 4). This
finding aligns well with prior research on vestibular function testing.
In particular, dynamic visual acuity (DVA) is primarily governed
by the vestibulo-ocular reflex (VOR), which stabilises gaze during
head movements [70]. Ramaioli et al. [70] demonstrated that DVA
is consistently lower during head translations (tVOR) than during
head rotations (rVOR), further supporting our conclusion that head
rotation plays a more dominant role in eye-head coordination.

6.3 Generalisability and Application

As demonstrated in Section 5.3, HAGI’s performance remained
consistent in cross-dataset evaluations, showing no degradation in
MAE compared to within-dataset evaluations. This suggests that
HAGI can be directly applied in real-world scenarios without re-
quiring retraining or fine-tuning, provided that the SLAM poses
of the mobile eye tracker are available. Furthermore, our results
indicate that even when using only head rotation or head transla-
tion, HAGI still outperforms existing approaches. This highlights
its adaptability; for mobile eye trackers lacking a SLAM system,
HAGI can utilise rotation data from IMUs to achieve robust gaze
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Head movements Nymeria [54] Ego-Exo04D [19] HOT3D [7]
Rotation Translation 10% 30% 50% 90% 10% 30% 50% 90% 10% 30% 50% 90%
CSDI [82] X X 472 590 7.44 1054 3.78 4.78 6.07 891 3.67 4.69 585 8.28
X v 466 575 729 1047 3.72 4.63 591 879 3.60 457 574 8.19
HAGI (Ours) v X 441 536 6.66 956 3.55 435 543 823 342 433 538 7.79
v v 3.67 4.55 5.77 8.53 3.06 3.80 4.86 7.37 3.01 3.91 4.99 7.34

Table 4: The results (mean angular error) of the ablation study on head rotation and translation across different data loss ratios
in the Nymeria [54], Ego-Exo04D [19], and HOT3D [7] datasets. The best results are marked in bold, and the second-best are

underlined.
HAGI components Nymeria [54] Ego-Exo04D [19] HOT3D [7]
Early Fusion Skip Fusion Ley 10% 30% 50% 90% 10% 30% 50% 90% 10% 30% 50% 90%
CSDI [82] X X X 472 590 744 1054 378 478 607 891 3.67 469 585 828
v X X 397 493 631 928 328 410 529 797 313 410 521 7.68
HAGI (Ours) v v X 370 461 58 878 3.08 3.87 502 7.87 3.04 396 506 7.46
v v v 367 455 577 853 3.06 3.80 4.86 7.37 3.01 3.91 499 7.34

Table 5: The results (mean angular error) of the ablation study on different HAGI components across different data loss ratios
in the Nymeria [54], Ego-Exo04D [19], and HOT3D [7] datasets. The best results are marked in bold, and the second-best are

underlined.

imputation. While our task definition assumes perfect time align-
ment between head and eye movements, the real-world dataset
used in our experiments includes a natural temporal offset of ap-
proximately 20-50 milliseconds. The strong performance of HAGI
under these conditions suggests that it is resilient to small delays
between head and gaze signals, further supporting its practicality
in real-world use.

HAGI can be employed in two primary ways. First, it can be
a post-processing method, particularly beneficial for preparing
gaze data for machine learning models. Since machine learning
approaches cannot handle missing values directly, HAGI can im-
pute these values in a human-like manner, enhancing data util-
isation efficiency. Second, a key advantage of HAGI is its abil-
ity to impute gaze data at arbitrary locations within a 5-second
time window. This means that after an initial 5-second recording
period, any newly encountered missing values can be imputed
directly with HAGI. This capability makes HAGI promising for
gaze-based interactive systems. However, the current inference
speed—approximately 2.9 seconds per 5-second segment on an
NVIDIA V100 32 GB GPU—remains a limitation for real-time de-
ployment. We plan to optimise the model’s efficiency to support
real-time gaze interaction, such as gaze-based selection, foveated
rendering, or attention-aware interfaces, in future work.

6.4 Limitations and Future Work

HAGI is designed for gaze imputation in mobile eye tracking scenar-
ios, and all evaluations in this work were conducted on egocentric
datasets involving everyday human activities. While this setting
reflects realistic use cases for head-mounted eye trackers, advanced
stationary eye trackers—such as the Tobii Eye Tracker 5 [83]—also

support head tracking and may benefit from our approach. In fu-
ture work, we aim to investigate the adaptability of HAGI to such
desktop setups.

While our quantitative and distributional results demonstrate
that HAGI produces realistic gaze trajectories at 30 Hz, we have
not evaluated its performance on higher-frequency gaze data. As
modern mobile eye trackers typically provide head-tracking sensors
at higher sampling rates, head features can, in principle, support
higher-frequency gaze imputation. However, this would require re-
training the model, and current public datasets with high-frequency
gaze recordings are limited. We aim to investigate this direction in
future work.

Additionally, although our task assumes synchronised head and
eye data, our experiments used datasets where head and gaze signals
have an inherent delay of around 20-50 ms. This suggests that HAGI
is robust to small misalignments. In future work, we intend to assess
its tolerance to longer delays, which are common in practice due
to imperfect sensor synchronisation.

7 CONCLUSION

In this work, we introduced HAGI- a novel multi-modal diffusion-
based approach for gaze imputation that leverages eye-head coordi-
nation to enhance the reconstruction of missing gaze data. We eval-
uated HAGI on three large-scale egocentric gaze datasets -Nymeria,
Ego-Ex04D, and HOT3D - and demonstrated that it significantly
outperforms traditional interpolation methods and state-of-the-art
deep learning baselines. Specifically, HAGI achieves up to 22% im-
provement in mean angular error and generates more realistic gaze
velocity distributions that closely match human eye movements.



These results highlight the effectiveness of integrating head move-
ment information in gaze imputation tasks and establish HAGI as
a robust solution for improving gaze data quality with significant
potential for real-world applications.
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