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Fig. 1: Our model’s eye fixation prediction performances in different scenes. The green dot represents the ground truth of eye
fixation, the red dot denotes the result of our novel model, FixationNet, and the blue dot refers to the state-of-the-art method [21]. In
practice, our model exhibits higher accuracy than the state-of-the-art method.

Abstract—Human visual attention in immersive virtual reality (VR) is key for many important applications, such as content design,
gaze-contingent rendering, or gaze-based interaction. However, prior works typically focused on free-viewing conditions that have
limited relevance for practical applications. We first collect eye tracking data of 27 participants performing a visual search task in four
immersive VR environments. Based on this dataset, we provide a comprehensive analysis of the collected data and reveal correlations
between users’ eye fixations and other factors, i.e. users’ historical gaze positions, task-related objects, saliency information of the VR
content, and users’ head rotation velocities. Based on this analysis, we propose FixationNet – a novel learning-based model to forecast
users’ eye fixations in the near future in VR. We evaluate the performance of our model for free-viewing and task-oriented settings and
show that it outperforms the state of the art by a large margin of 19.8% (from a mean error of 2.93◦ to 2.35◦) in free-viewing and of
15.1% (from 2.05◦ to 1.74◦) in task-oriented situations. As such, our work provides new insights into task-oriented attention in virtual
environments and guides future work on this important topic in VR research.
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1 INTRODUCTION

Immersive virtual reality (VR) can provide users with higher sense of
presence than traditional 2D displays. It gives users a chance to explore
a virtual 3D world and has become an important 3D user interface in
recent years. Human visual attention in immersive VR is crucial for
many important applications, including level-of-detail management
[29], VR content design [43], gaze guidance [16], gaze-contingent
rendering [34, 46], redirected walking [45], and gaze-based interaction
[12, 24, 31, 36]. Consequently, visual attention analysis and prediction
has become a popular research topic in VR [19–22, 43, 52]. However,
previous works typically focused on free-viewing conditions and few
works have studied the more challenging but also more practically
relevant task-oriented situations in which users’ visual attention is
influenced by a specific task [17, 21, 27].

Currently, the most commonly used solution for eye tracking in
immersive virtual reality is to employ an eye tracker. However, eye
trackers themselves can only provide users’ current and historical gaze
positions and cannot directly forecast users’ gaze positions in the future.
Information on users’ future eye fixations is valuable for intelligent
user interfaces [37] and has significant relevance for a number of areas,
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including visual attention enhancement [14], pre-computation of gaze-
contingent rendering [21, 34], dynamic event triggering [17], as well as
human-human and human-computer interaction [33, 44]. An intuitive
method of forecasting eye fixations is to only employ users’ current
gaze. However, current gaze has been proven to be only effective
at short time intervals and cannot efficiently encode long-term gaze
behavior [20]. Recently, Hu et al. proposed a learning-based model
to forecast users’ future gaze positions [21] but their method is also
geared to free-viewing conditions.

To address the limitations of existing methods, in this work we
propose the first learning-based model to forecast users’ eye fixations
in task-oriented virtual environments. We specifically focus on visual
search, which is a frequent and important routine behavior in people’s
everyday life, e.g. when looking for your smartphone, trying to find
a friend in a crowd, or searching for food in the fridge. While visual
search is an active area of vision research [50], most findings about
visual search are derived from 2D viewing conditions. Visual search in
immersive virtual reality has not been fully explored.

We first collect eye tracking data of users in a task-oriented virtual
environment. Specifically, 27 participants were asked to perform a vi-
sual search task in four immersive virtual environments, containing two
static scenes and two dynamic scenes. Using this dataset, we analyse
users’ eye fixations and show that fixations are closely correlated with
other factors, i.e. previous gaze positions, task-related objects, saliency
information of the VR content, and users’ head rotation velocities.
Based on our analysis, we then propose FixationNet – a novel learning-
based method for fixation forecasting in VR that consists of a feature
extraction network and a fixation prediction network. We further con-
duct extensive experiments to evaluate the performance of our model.
Our results show that our model significantly outperforms the state-of-
the-art method, achieving an improvement of 19.8% (from a mean error
of 2.93◦ to 2.35◦) in free-viewing conditions and an improvement of
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15.1% (from 2.05◦ to 1.74◦) in task-oriented situations.
The specific contributions of our work are three-fold:

• We provide a novel dataset that contains users’ eye tracking data
in task-oriented virtual environments, containing both static and
dynamic scenes.

• We analyse human visual attention during visual search on this
dataset and reveal interesting correlations between users’ eye
fixations and other factors, such as historical gaze positions and
task-related objects.

• We present FixationNet, a novel learning-based model for fore-
casting human eye fixations in task-oriented virtual environments
that outperforms the state of the art by a large margin.

2 RELATED WORK

2.1 Computational Modeling of Visual Attention
In the area of vision research, computational modeling of visual atten-
tion has been well-studied in the past few decades. Generally, models
of visual attention can be classified into bottom-up and top-down mod-
els. Bottom-up models predict human visual attention by employing
low-level image features such as intensity, contrast, color, and orien-
tation [6, 23]. For example, Itti et al. proposed one of the earliest
bottom-up saliency prediction models [23]. This model combines mul-
tiscale image features including color, intensity, and orientation to
predict saliency maps. Cheng et al. presented a model to detect salient
regions based on global contrast [6]. In contrast, top-down models
focus on high-level image features such as specific tasks and scene
context [13, 35]. Peters et al. incorporated task-dependent influences
into a computational model to predict visual attention [35]. Ehinger
et al. took scene context into consideration to predict visual attention
for a person detection task [13]. Recent advances in machine learning
have spurred interest in predicting fixation sequences instead of static
saliency maps [8, 28] as well as in forecasting attention e.g. during
mobile device interactions [44] or multi-person conversations [33].

In the field of VR, gaze prediction has also been explored in some
aspects. Some researchers focused on non-interactive situations such as
360◦ images and 360◦ videos. Sitzmann et al. adapted existing saliency
predictors to predict saliency maps of 360◦ images [43]. Xu et al.
presented a model that takes 360◦ video frames as input to predict gaze
displacement [52]. This model is specialized for 360◦ videos and it is
not suitable for real-time calculation due to its time cost. In the aspect
of interactive virtual environments, Hu et al. proposed an eye-head
coordination model to predict gaze positions in static virtual scenes
without using any eye trackers [22]. Recently, Hu et al. presented a
gaze prediction model called DGaze for dynamic virtual scenes [21].
DGaze can take advantage of users’ historical gaze positions provided
by an eye tracker to predict users’ gaze positions in the future. However,
DGaze is derived from free-viewing conditions (no specific task) and its
performance will deteriorate when applied to task-oriented situations
[21]. In contrast with DGaze, our model concentrates on task-oriented
situations and takes task-related data into consideration to forecast
users’ eye fixations in the future.

2.2 Gaze Prediction in Task-Oriented Situations
Gaze prediction in task-oriented situations has also been explored
by many researchers. Borji et al. [4] and Koulieris et al. [27] both
focused on gaze prediction in video games. Borji et al. employed
players’ input such as 2D mouse position and joystick buttons to predict
visual attention while Koulieris et al. utilized game state variables to
predict users’ gaze in video games. Deng et al. proposed a random
forest-based model to predict drivers’ fixation positions in a driving
environment [10]. Zheng et al. presented an end-to-end learning
framework to predict visual saliency on webpages under different task
conditions such as information browsing and form filling [54]. Xu et al.
explored spatio-temporal modeling and prediction of visual attention
for a text editing task in 2D graphical user interfaces [51]. Recently,
Bâce et al. studied users’ visual attention during everyday mobile

device interactions [2]. In contrast with previous works, we focus on a
visual search task in immersive virtual environments.

2.3 Visual Search

Visual search requires a subject to detect a target among many distrac-
tors and it is a typical perceptual task in people’s daily life. In vision
research, it has been one of the most popular research topics in the past
few decades. In their seminal work, Treisman et al. analysed human
attention in visual search task and proposed a feature-integration theory
of attention [47]. Wolfe proposed a guided search model for visual
search task and presented a computer simulation of substantial parts
of the model [49]. Vickery et al. focused on the target template set-up
process in visual search and concluded that detailed visual information
is utilized to find the target [48]. Hollingworth revealed that visual
memory guides attention during the process of visual search [18]. Re-
cently, Wolfe et al. discussed some factors that guide attention in visual
search, which include bottom-up features, top-down guidance, and the
previous history of search [50]. Hadnett-Hunter et al. explored the ef-
fect of search task on visual attention in desktop monitor-based virtual
environments [17]. A recent line of works has explored predicting and
visually decoding the target of visual search from eye fixations [39–41].
However, most of the findings about visual search are derived from 2D
viewing conditions and only a few studies focus on 3D environments.
Kit et al. evaluated the role of scene memory in guiding eye movements
in an immersive virtual environment [26]. Li et al. reported that spatial
memory of the scene influences visual search strategies in large-scale
environments [30]. In this work, we analyse the characteristics of hu-
man visual attention during visual search in immersive virtual reality
and utilize that characteristics to forecast human eye fixations.

3 DATA COLLECTION

3.1 Stimuli

To collect the gaze data, we used four immersive virtual environments as
our stimuli (Fig. 2). The environments contain two outdoor scenes, i.e.
a tropical island and a desert, and two indoor scenes, i.e. a warehouse
and a gym, that are commonly used in VR research and applications
[17,21,22,32]. Considering that human gaze behavior was shown to be
different in dynamic and static scenes [1, 15, 21], we ensured to have
both a dynamic and static indoor as well as outdoor scenes, respectively.
In each static scene, we randomly placed three types of static objects,

i.e. chests and footballs, for the visual search task. In each dynamic
scene, three types of dynamic objects, i.e. deer and cats, were employed.
We controlled the animals’ movements using their own animations and
navigated their paths using our own Unity script to make the animals
wander in the environments in a random manner [21]. In each scene,
the three types of objects share some common features (e.g., color, size,
and shape) with each other and this obliges a participant to identify
targets by performing a serial search using eye fixations [3].

Fig. 2: Four immersive virtual scenes used for data collection, contain-
ing two dynamic scenes (top) and two static scenes (bottom).



3.2 Apparatus and Participants
Our data collection experiments were conducted on a platform with
an Intel(R) Core(TM) i7-10875H @ 2.30GHz CPU and an NVIDIA
GeForce RTX 2060 GPU. HTC Vive was employed to display the
scenes and Vive controller was utilized for user interaction. Users’ gaze
data was collected using a 7invensun VR eye tracker running at 100 Hz
and providing an accuracy of 0.5◦. Users’ head motion was recorded
using HTC Vive’s Lighthouse tracking system at a sampling rate of 100
Hz. We employed the Unity3D game engine to render the test scenes in
real-time and utilized our own Unity scripts to record the information
on the task-related objects at a frequency of 100 Hz. The scene content,
i.e., the image sequences viewed by the participants were recorded by
a screen-recorder at 60 f ps. The snapshot of our experimental setup is
demonstrated in Fig. 3.

Fig. 3: Experimental setup used in our study.

We recruited 27 participants (15 males and 12 females, aged between
17 and 32 years) to take part in our experiments. All of the users
reported normal or corrected-to-normal vision. We calibrated the eye
tracker for each user before he or she started the experiment.

3.3 Procedure
Each participant was asked to explore two scenes containing one dy-
namic scene and one static scene that were randomly chosen from the
four scenes. Before experiments in one scene, participants were given
at least five minutes to get familiar with the virtual environment and the
three types of objects in this scene. In each scene, a user was required
to complete three trials that corresponded to three types of targets.
Specifically, in one trial, one type of object was utilized as the search
target while the other two types of objects were treated as distractors.
The total number of targets in one trial is equal to the total number of
distractors. In the virtual environment, we placed a target object in
front of the user’s start location in order to inform the user of the search
target in this trial. Users could teleport themselves to any location in
their field of view by pointing at the destination using a Vive controller.
They could also switch between four preset locations (including the
start location) to fully explore the virtual environment. During their
exploration in the environment, the participants were required to search
for the target objects and, once a target was found, they could cast a
ray using the Vive controller to hit the object. If a target was hit, it will
disappear. If a distractor was hit, nothing will happen. This feedback
mechanism helps the participants remember the search target in the
trial. Each trial lasted for about two minutes and the number of objects
(targets and distractors) was sufficient for the visual search task. The
time that the users had utilized and the number of targets that they had
found were displayed near the Vive controller (Fig. 3) to help them
become aware of the progress of the search task. The test scenes were
silent and the users were provided with a pair of earplugs to avoid
auditory disturbance.

During the experiments, we recorded the scene content, i.e. the
image sequences viewed by the users, users’ head rotation velocities,
information on task-related objects, and users’ gaze positions (measured
in visual angles). Given that this paper focuses on visual search, the
targets and distractors in the search task were treated as task-related
objects. Information on these objects that we use includes the object’s
position (its center) in horizontal and vertical direction, its distance from
the observer, and a tag indicating whether it is a target or a distractor.

For simplicity, only the information on the nearest five task-related
objects was recorded.

In total, our dataset contains 27 participants’ exploration data in 162
(27× 2× 3) trials. Each trial data contains about 12,000 gaze posi-
tions (100 Hz sampling rate), 12,000 task-related object information
(100 Hz), 12,000 head velocities (100 Hz), and 7,200 frames of scene
screenshots (60 f ps). Our dataset is named FixationNet-dataset and
is available online at https://cranehzm.github.io/FixationNet.

4 ANALYSIS OF EYE FIXATION

4.1 Fixation Distribution and Fixation-Gaze Correlation
Human eye movements can be classified into two types: fixations
(pauses over regions of interest) and saccades (rapid eye movements
between fixations). Compared with a fixation, little or no visual pro-
cessing can be achieved during a saccade [38]. Therefore, in order to
analyse users’ visual attention, we first extracted users’ eye fixations
from the raw gaze data. Specifically, we employed a thresholding
method based on velocity and duration to detect fixations [38]. We
set the threshold velocity for gaze speed to 75◦/s [21] and required a
minimum fixation duration of 200 ms [38]. Consequently, we obtained
1,661,223 fixation positions from the raw gaze data. For clarity, we
utilize the term “gaze position” to denote a raw gaze data and employ
the term “fixation position” to refer to a gaze data that lies in a fixation
period.

To gain a sound understanding of users’ fixations, we first analysed
the distribution of the fixation positions. The left of Fig. 4 illustrates
fixation positions’ distribution on the head mounted device’s (HMD’s)
screen, which is smoothed using a Gaussian filter with sigma equal
to one degree of visual angle [5]. We can see that most of users’
fixation positions lie in the central region of the HMD’s screen and
this suggests that the information in the central region is more likely
to attract users’ visual attention than the information in the peripheral
region. Moreover, we find that the fixation positions, whose center is
(0.14◦,10.13◦), exhibit a slight bias towards the upper visual field, as
revealed in prior work [17]. This reflects that, during the visual search
task, the participants are more likely to pay attention to the VR content
in front of them. We further extracted some cluster centers from the
fixation positions using a k-means clustering algorithm with k set to
128. We can see from the right of Fig. 4 that, similar to the fixation
positions, the cluster centers are mostly located on the screen center
and their distribution exhibits an upward bias.
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Fig. 4: Left: The distribution of users’ fixation positions on the HMD’s
screen. Right: The cluster centers extracted from the fixation positions.
The fixation positions and the cluster centers mostly lie in the central
region and their distributions exhibit an upward bias.

We further analysed the temporal characteristics of users’ visual
attention. Specifically, we calculated the correlation between users’ fix-
ation positions and their historical gaze positions using Spearman’s rank
correlation coefficient. Spearman’s correlation measures the monotonic
relationship between two variables and outputs a value between −1
(perfect monotone decreasing relationship) and +1 (perfect monotone
increasing relationship). The results are illustrated in Fig. 5. We can
see that the horizontal and vertical correlations are very strong (> 0.9)
when the time interval between fixation position and historical gaze po-
sition is short (≤ 150 ms). However, with the increase of time interval,
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the correlations deteriorate significantly. This is caused by the fact that
the duration of a fixation is usually in the range of 200−400 ms [38].
If the time interval is very large (> 400 ms), users may have changed
their fixations and their fixation positions are therefore less correlated
with the historical gaze positions. These results indicate that historical
gaze positions are more effective in forecasting users’ fixation positions
in the near future than predicting users’ long-term fixations.
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Fig. 5: The correlations between users’ fixation positions and historical
gaze positions in the horizontal (left) and vertical (right) directions. The
fixation positions are highly correlated with historical gaze positions at
short time intervals.

4.2 Fixation-Task Correlation
To analyse the correlation between users’ fixation positions and the task-
related objects, we calculated Spearman’s correlations between fixation
positions and historical task-related object positions. As illustrated in
Fig. 6, in both the horizontal and vertical directions, users’ fixation
positions are correlated with task-related objects, indicating that task-
related objects attract users’ visual attention. Fig. 6 also reveals that
users’ fixation positions have higher correlations with nearer task-
related objects. This suggests that users are more likely to pay attention
to the task-related objects that are closer to them.
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Fig. 6: The horizontal (left) and vertical (right) correlations between
fixation positions and historical task-related objects. Tasks 1-3 are the
nearest three objects, ranked from nearest to farthest. Users’ fixation
positions have correlations with task-related objects.

To analyse the differences between targets and distractors’ influ-
ences on users’ visual attention, we calculated the correlations between
fixation positions and the nearest task-related object in situations when
the nearest object is a target or a distractor, respectively. Fig. 7 illus-
trates that users’ visual attention is more likely to be attracted by the
targets than the distractors. Moreover, we find that fixation-target and
fixation-distractor correlation curves arrive at their peaks at the time
interval of 200 ms, which means users’ fixation positions lag behind
the task-related objects. This indicates users’ fixation positions follow
the task-related objects, i.e. users’ visual attention is directed by the
task-related objects [11].

4.3 Fixation-Saliency and Fixation-Head Correlation
The bottom-up saliency information of the scene usually attracts users’
visual attention [21, 23, 52]. To analyse the correlation between users’
fixation positions and the saliency information of the VR content, we
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Fig. 7: The horizontal (left) and vertical (right) correlations between
fixation positions and the nearest targets and distractors. Fixation
positions have higher correlations with the targets than the distractors.

utilized SAM-ResNet [8], which is one of the state-of-the-art saliency
predictors, to extract saliency maps from VR images. Specifically, since
users’ fixation positions are mostly located on the screen center (Fig. 4),
we calculated the saliency maps of the central region with a radius
of 35◦. Based on saliency values, we evenly divided the pixels of a
saliency map into 5 salient regions, i.e. salient regions 1-5, ranked from
high to low saliency values. We further calculated the distribution of
users’ fixation positions on the salient regions. As illustrated in Fig. 8,
most of the fixation positions lie in the regions with high saliency values.
The results indicate that the salient regions of the VR content attract
users’ visual attention.
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Fig. 8: The distribution of users’ fixation positions on the salient regions
of the historical VR content. Saliency maps 1-3 correspond to the real-
time saliency map, saliency map in the past 200 ms, and saliency map in
the past 400 ms, respectively. The fixation positions are mostly located
in the regions with high saliency values.

We also analysed the correlation between users’ fixation positions
and their head rotation velocities. Spearman’s rank correlation coef-
ficient was employed to measure the correlation and the results are
illustrated in Fig. 9. We can see that, in both the horizontal and vertical
directions, users’ historical head velocities are correlated with their
fixation positions. This result demonstrates that users’ historical head
rotation velocities can be applied to forecast their eye fixations.
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Fig. 9: The correlations between users’ fixation positions and their
historical head rotation velocities in the horizontal (left) and vertical
(right) directions. The fixation positions are correlated with historical
head velocities.



5 FIXATIONNET MODEL

5.1 Problem Formulation
We formulate the problem of forecasting human eye fixations in im-
mersive virtual environments as a regression problem, whose goal is
to predict a user’s fixation position in the near future given his or her
historical gaze positions. A fixation position ( fx, fy) is denoted by
user’s visual angles in the horizontal and vertical directions. Human
eye movements can be classified into fixations and saccades. We only
forecast fixation positions, which refer to gaze data that lies in fixation
periods, because little or no visual processing can be achieved during
saccade periods [38]. In addition to historical gaze positions, other
related factors such as user’s head rotation velocities and the VR con-
tent can also be employed to facilitate fixation prediction. Since this
paper focuses on task-oriented situations, we also take task-related data
into consideration when forecasting fixations. In our experiments, we
evaluated our model’s ability of forecasting users’ eye fixations in the
future 150 ms, 300 ms, 450 ms, and 600 ms.

5.2 Feature Extraction Network
The first component of our model is a feature extraction network, which
extracts features from VR images, historical task-related data, histor-
ical gaze data, and historical head data for further fixation prediction
(Fig. 10).

To take advantage of the VR content viewed by the observers, we
employed SAM-ResNet [8], which is one of the state-of-the-art saliency
predictors, to calculate the saliency maps of VR images and then uti-
lized a CNN layer to extract saliency features. Since users’ fixation
positions mostly lie in the central region of the screen (Fig. 4), we
only took images of the central region as input. The calculation of
saliency maps is very time-consuming. Therefore, to improve com-
putational efficiency, we sampled the VR images every 200 ms and
only computed saliency maps of the sampled images. For each predic-
tion, we employed saliency maps in the past 400 ms, i.e. two saliency
maps, down-sampled them to the size of 24×24, and then fed them
to a CNN layer. The CNN layer has a kernel size of 1×1, and eight
output channels. A batch normalization layer was added after the CNN
layer and then ReLU was applied to activate the neurons. After acti-
vation, a max-pooling layer with kernel size two was employed, and
then a dropout layer with dropout rate 0.5 was applied to improve the
network’s generalization ability.

As revealed in Sect. 4.2, users’ fixation positions are correlated with
task-related objects, i.e. targets and distractors in the visual search
task. Therefore, in light of the good performance of 1D CNN for
processing time series data [7, 21], we utilized two 1D CNN layers,
each with kernel size of one, to extract features from historical task-
related objects. Specifically, the information on task-related objects
in the past 400 ms (∆t1 = 400 ms) were taken as the CNN layers’
input and each data point contains the information on the nearest three
task-related objects (Ti ∈ R12). The two CNN layers have 64 and 32
output channels, respectively. Each CNN layer was followed by a batch
normalization layer, a ReLU activation function, and a max-pooling
layer with kernel size two.

To make use of historical gaze data, a 1D CNN layer with kernel
size of one and 32 output channels was applied to extract features from
users’ gaze positions in the past 400 ms (∆t2 = 400 ms, Gi ∈ R2). A
batch normalization layer was added after the CNN layer and ReLU
was utilized as the activation function. A max-pooling layer with kernel
size two was applied after activation.

Sect. 4.3 reveals that users’ head rotation velocities have correlations
with their fixation positions. Therefore, we employed a 1D CNN
layer, which has a kernel size of one and 64 output channels, to extract
features from head velocities in the past 400 ms (∆t3 = 400 ms, Hi ∈R2).
This CNN layer was followed by a batch normalization layer, a ReLU
activation function, and a max-pooling layer with kernel size two.

5.3 Fixation Prediction Network
After the feature extraction network, we employed a fixation prediction
network to forecast users’ eye fixations based on the extracted features

and prior knowledge of the fixation data (Fig. 10).
We first utilized a fully connected (FC) layer with 128 neurons

to integrate the extracted features. A batch normalization layer was
added after the FC layer, ReLU was applied as the activation function,
and a dropout layer with dropout rate 0.5 was employed to improve
generalization ability.

Previous work on taxi destination prediction reveals that prior knowl-
edge of the destinations can be used to improve the accuracy of desti-
nation prediction models [9]. Therefore, inspired by this finding, we
integrated prior knowledge of the fixation data in the architecture of
our model. Specifically, to take advantage of prior information on the
distribution of users’ fixation positions, we extracted cluster centers
((ci)

C
i=1, ci ∈ R2, C is the number of cluster centers) from the fixation

data and then predicted fixation position using the weighted centroid of
the cluster centers and user’s current gaze position:

f̂ = g0 +
C

∑
i=1

pici, (1)

where f̂ is the predicted fixation position; g0 is user’s current gaze
position; ci is the position of a cluster center and pi is its corresponding
weight with ∑

C
i=1 pi = 1 and pi ≥ 0. The weights of the cluster centers

((pi)
C
i=1) were calculated by a classification layer. The classification

layer is a fully connected layer with C number of neurons. It integrates
features from the previous layer and utilizes Softmax activation function
to generate the weight of each cluster center:

pi =
exp(ei)

∑
C
j=1 exp(e j)

, (2)

where (e j)
C
j=1 are the output of the classification layer before activation.

In our experiments, we employed a k-means clustering algorithm
to extract cluster centers from the corresponding training fixation data.
We set k = 128 for k-means algorithm in the experiments and obtained
128 cluster centers (C = 128) for fixation prediction.

5.4 Loss Function and Training Algorithm

To train our model, we employed the angular error between the ground
truth line of sight and the predicted line of sight, i.e. the displacement
in visual angles, as our loss function (Angular Loss):

L( f , f̂ ) = dangular( f , f̂ ), (3)

where L( f , f̂ ) is the angular loss; f is the ground truth fixation position;
f̂ is the predicted fixation position; dangular( f , f̂ ) is the angular distance
between f and f̂ .

We employed Adam with weight decay 5.0e−5 as our optimizer to
minimize the angular loss. We set the initial learning rate to 0.01 and
decayed the learning rate by γ every epoch: lr = lr0 ∗ γepoch−1, where
lr is the current learning rate; lr0 is the initial learning rate; γ is the
multiplicative factor of learning rate decay; epoch is the current epoch.
We set γ to 0.80 and trained the model for 30 epochs in total using
a batch size of 512. Our model was implemented using the PyTorch
framework. The source code of our model and the pre-trained models
are available online at https://cranehzm.github.io/FixationNet.

6 EXPERIMENTS AND RESULTS

We conducted extensive experiments to evaluate the performance of
our model. Specifically, we first compared our model with the state-of-
the-art method DGaze [21] and two baselines on our dataset using a
cross-user evaluation and a cross-scene evaluation. We also evaluated
our model’s performance in free-viewing conditions. An ablation study
was performed to validate the effectiveness of each component in our
model.

https://cranehzm.github.io/FixationNet
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Fig. 10: Architecture of the proposed model FixationNet. FixationNet consists of a feature extraction network and a fixation prediction network.
The feature extraction network extracts features from VR images, historical task-related data, historical gaze data, and historical head data for
further fixation prediction. The fixation prediction network combines the extracted features and the pre-computed cluster centers of the fixations
to forecast users’ eye fixations.

6.1 Comparison, Baselines, and Evaluation Metric

We compared the performance of our proposed model FixationNet
with the state-of-the-art approach DGaze [21]. We also tested two
baselines: one was to employ user’s current gaze position (Current
Gaze) and the other was to utilize the mean of historical gaze positions
(Mean Gaze). In practice, the mean of gaze positions in the past 50 ms
was utilized as the mean gaze baseline. To evaluate the performance of
fixation prediction, we employed the angular error between the ground
truth and the predicted fixation position as our evaluation metric [21,22].
The smaller the angular error, the better the prediction performance.

6.2 Cross-User Evaluation

To evaluate our model’s generalization capability for different users,
we set users’ fixation positions in the future 150 ms as our model’s pre-
diction target and performed a three-fold cross-user evaluation. Specif-
ically, we evenly divided all the data into three folds according to
different users, trained our model on two folds, and tested on the re-
maining one fold. Our model was trained and tested for three times
in total in which each fold was tested once. We collected our model’s
prediction results in the three tests and calculated the mean and standard
deviation (SD) of the prediction errors. To compare our model with
the state-of-the-art method DGaze [21], we retrained DGaze on our
dataset and evaluated its performance using the three-fold cross-user
evaluation. Table 1 presents the cross-user prediction performances of
our model and other methods. We can see that our model FixationNet
outperforms the state-of-the-art method DGaze by 15.1%, i.e. from
a mean error of 2.05◦ to 1.74◦. We performed a paired Wilcoxon
signed-rank test and validated that the difference between our model
and DGaze is statistically significant (p < 0.01). Fig. 1 highlights some
of our prediction results. We also calculated the cumulative distribution
function (CDF) of the prediction errors for performance comparison.
The higher the CDF curve, the better the prediction performance. As
illustrated in the left of Fig. 11, our model achieves better performance
than DGaze in terms of CDF curve. The above results demonstrate that
our model has a good prediction accuracy and a strong generalization
capability for different users.

We further tested our model’s prediction performances at longer
time intervals. Specifically, we respectively set users’ fixation positions
in the future 300 ms, 450 ms, and 600 ms as our model’s prediction
target and employed a three-fold cross-user evaluation to calculate our
model’s prediction results. Instead of using Equation 1 in the fixation

Ours DGaze Current Gaze Mean Gaze
Mean 1.74◦ 2.05◦ 2.07◦ 2.26◦

SD 3.61◦ 3.45◦ 4.82◦ 4.69◦

Table 1: Our model and other methods’ cross-user prediction perfor-
mances in the future 150 ms. Our model achieves an improvement of
15.1% over DGaze [21] in terms of mean prediction error.

prediction network, we utilized

f̂ =
C

∑
i=1

pici, (4)

because we found that user’s current gaze was less effective for fore-
casting fixations over 300 ms (See discussion on the effectiveness of
current gaze in Sect. 6.5). DGaze was retrained and tested in the same
manner for comparison. The mean prediction errors of our model
and other methods are illustrated in the left of Fig. 12. We can see
that our model outperforms other methods at different time intervals
and the results are statistically significant (p < 0.01, paired Wilcoxon
signed-rank test). We also find that the performances of all the methods
deteriorate significantly with the increase of prediction time. From
the prediction time of 150 ms to 600 ms, the accuracy of our model
deteriorates from 1.74◦ to 4.94◦. This is because the durations of users’
fixations are often in the range of 200− 400 ms [38], which means
users usually change their fixations after such a time interval. As a
consequence, it will be difficult to accurately forecast users’ fixation
positions in the long-term future (> 400 ms) based on only historical
features (See Sect. 7 for further discussion).

6.3 Cross-Scene Evaluation
Since our dataset was collected from four different scenes, we also
evaluated our model’s generalization capability for different scenes.
We set users’ fixation positions in the future 150 ms as our model’s
prediction target and utilized a four-fold cross-scene evaluation to train
and test our model. DGaze was also retrained and tested for comparison.
The results are indicated in Table 2. In terms of cross-scene prediction
performance, our model achieves an improvement of 11.7% over the
state-of-the-art method DGaze (from a mean error of 2.05◦ to 1.81◦)
and the result is statistically significant (p < 0.01, paired Wilcoxon
signed-rank test). We also calculated the CDF curves of the prediction
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Fig. 11: The cumulative distribution functions of our model and
DGaze’s cross-user (left) and cross-scene (right) prediction errors in
the future 150 ms. Our model outperforms DGaze in both cross-user
performance and cross-scene performance.

errors. The right of Fig. 11 illustrates that our model outperforms
DGaze in the aspect of CDF curve. The above results validate that
our model has a good prediction accuracy and a strong generalization
capability for different scenes.

Ours DGaze Current Gaze Mean Gaze
Mean 1.81◦ 2.05◦ 2.07◦ 2.26◦

SD 3.88◦ 3.44◦ 4.82◦ 4.69◦

Table 2: Our model and other methods’ cross-scene prediction perfor-
mances in the future 150 ms. Our model outperforms DGaze by 11.7%
in the aspect of mean prediction error.

6.4 Performance in Free-Viewing Conditions

We further evaluated our model’s performance on a newly released free-
viewing VR eye tracking dataset called DGaze-dataset [21]. DGaze-
dataset records 43 users’ eye tracking data in five dynamic virtual
environments under free-viewing conditions. It contains the VR con-
tent viewed by the observers, the information on the dynamic objects,
users’ gaze positions, and their head rotation velocities. We first ex-
tracted fixation positions from the raw gaze data using the same method
as Sect. 4.1 and obtained 1,224,352 fixation positions. Then we re-
trained our model and DGaze on this dataset to evaluate their prediction
performances. To train our model, we treated the information on the dy-
namic objects as a kind of task-related data and extracted features from
them to forecast fixations. Equation 4 was employed in the fixation
prediction network. We employed a three-fold cross-user evaluation
and a five-fold cross-scene evaluation (this dataset contains five scenes)
to evaluate our model and other methods’ prediction performances.
As illustrated in Table 3, our model performs significantly better than
the state-of-the-art method DGaze (p < 0.01, paired Wilcoxon signed-
rank test) when forecasting fixations in the future 150 ms, achieving
an improvement of 19.8% (from a mean error of 2.93◦ to 2.35◦) for
cross-user evaluation and an improvement of 19.5% (from 2.93◦ to
2.36◦) for cross-scene evaluation. The CDF curves of the prediction
errors are illustrated in Fig. 13. In terms of CDF curves, our model per-
forms better than DGaze for both cross-user evaluation and cross-scene
evaluation. The above results validate that our model outperforms the
state-of-the-art method in free-viewing conditions.

We further evaluated our model’s cross-user prediction performances
at longer time intervals, i.e. 300 ms, 450 ms, and 600 ms. The right
of Fig. 12 illustrates the results. Our model exhibits higher accuracy
than other methods in different prediction times and the results are
statistically significant (p < 0.01, paired Wilcoxon signed-rank test).
We also find that, similar to task-oriented situations, all the methods’
performances in free-viewing conditions deteriorate dramatically when
the prediction time increases.

Ours DGaze Current Gaze Mean Gaze
Cross- Mean 2.35◦ 2.93◦ 2.99◦ 3.20◦
User SD 3.70◦ 3.59◦ 6.65◦ 6.08◦

Cross- Mean 2.36◦ 2.93◦ 2.99◦ 3.20◦
Scene SD 3.72◦ 3.63◦ 6.65◦ 6.08◦

Table 3: Our model and other methods’ cross-user and cross-scene
prediction performances in the future 150 ms in free-viewing conditions.
Our model outperforms other methods in both cross-user performance
and cross-scene performance.

6.5 Ablation Study

We further performed an ablation study to evaluate the effectiveness of
each component in our model. Specifically, we respectively removed
the saliency maps of the VR images, task-related data, gaze data, head
data, and cluster centers and retrained the ablated models. Users’
fixation positions in the future 150 ms were set as the ablated models’
prediction targets and a three-fold cross-user evaluation was employed
to calculate the results. Table 4 presents the cross-user performances
of the ablated models. We can see that our model outperforms all the
ablated models and the results are statistically significant (p < 0.01,
paired Wilcoxon signed-rank test). This validates that each component
in our model helps improve our model’s accuracy. In addition, we
find that users’ historical gaze data plays the most important role in
our model. If more features related to users’ gaze, such as users’ eye
images, are provided, our model can be further improved by considering
these features (See our discussion in Sect. 7).

Ours Saliency Task Head Cluster Gaze
Mean 1.74◦ 1.77◦ 1.77◦ 1.83◦ 1.83◦ 2.01◦

SD 3.61◦ 3.74◦ 3.72◦ 4.14◦ 3.49◦ 4.80◦

Table 4: The cross-user prediction performances of our model and the
ablated models. Our model exhibits higher accuracy than all the ab-
lated models, meaning that each component contributes to our model’s
performance.

We also evaluated the effectiveness of user’s current gaze in the
fixation prediction network (Equation 1). Specifically, we tested our
model’s three-fold cross-user performances with and without current
gaze at different time intervals (Table 5). We find that current gaze is
effective at the prediction time of 150 ms and it becomes less useful
at large time intervals (≥ 300 ms). These results are statistically sig-
nificant (p < 0.01, paired Wilcoxon signed-rank test). This is caused
by the fact that the correlations between users’ current gaze positions
and their future fixations deteriorate dramatically with the increase of
time interval (Sect. 4.1). In light of this, we recommend to employ
current gaze in the fixation prediction network only when current gaze
positions are highly correlated (e.g. ≥ 0.9) with the fixations to be
predicted. When testing our model in free-viewing conditions, we
found that current gaze is not highly correlated (< 0.9) with fixations
even at the interval of 150 ms. Therefore, we did not utilize current
gaze when evaluating our model in free-viewing conditions (Sect. 6.4).

Prediction Time 150 ms 300 ms 450 ms 600 ms
Current Gaze 1.74◦ 3.32◦ 4.26◦ 5.06◦

w/o Current Gaze 1.91◦ 3.27◦ 4.20◦ 4.94◦

Table 5: Our model’s performances with and without current gaze
in different prediction times. Current gaze is effective at short time
interval and its effectiveness deteriorates when the prediction time
increases.
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Fig. 12: Our model and other methods’ cross-user prediction performances in task-oriented situations (left) and free-viewing conditions (right) at
different time intervals. Our model performs better than other methods in different prediction times.
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Fig. 13: The CDF curves of our model and DGaze’s cross-user (left)
and cross-scene (right) prediction errors in the future 150 ms in free-
viewing conditions. Our model performs better than DGaze in terms of
both cross-user performance and cross-scene performance.

6.6 Runtime Performance

We implemented our model on an NVIDIA TITAN Xp GPU platform
with an Inter(R) Xeon(R) E5-2620 v4 2.10 GHz CPU and calculated its
average prediction time for each fixation position. The average running
time of our model is 0.02 ms on GPU. If our model runs on CPU, the
average time cost is 0.16 ms. These results indicate that our model is
fast enough for practical usage.

7 DISCUSSION

This work made an important step towards forecasting task-oriented
attention in VR, i.e. forecasting human eye fixations in task-oriented
virtual environments. Our experimental results reveal some important
aspects related to users’ task-oriented visual attention.

Long-Term vs. Short-Term Fixation Prediction: From the results
in Fig. 12, we find that, in both task-oriented and free-viewing situa-
tions, the performances of all the methods deteriorate significantly with
the increase of prediction time. This means forecasting users’ long-term
eye fixations is much more difficult than predicting short-term fixations,
as revealed in prior works [20,21]. This is because users usually change
their fixations after a short time interval (200 - 400 ms [38]) to find a
new region of interest. Our model only employs historical features and
thus it is less effective for long-term fixation prediction. If some future
features related to users’ visual attention, such as the future information
on task-related objects, are available, our model’s long-term forecasting
performance can be further boosted by considering the future features.

Task-Oriented vs. Free-Viewing Fixation Prediction: By com-
paring our model’s task-oriented and free-viewing prediction perfor-
mances (Table 1, Table 2, and Table 3), we find that our model achieves
a larger improvement over the state-of-the-art method in free-viewing
situations than task-oriented conditions. This is because users’ eye
movements in task-oriented situations are much more complicated than
that in free-viewing conditions [4]. It is therefore more challenging

to forecast users’ task-oriented attention than to predict free-viewing
attention.

Cross-Scene vs. Cross-User Fixation Prediction: From the re-
sults in Table 1 and Table 2, we find that our model’s cross-user per-
formance is better than its cross-scene performance. This is because
users’ eye movements in dynamic scenes behave differently from that
in static scenes [1, 15, 21]. Our dataset contains both static scenes and
dynamic scenes and it is therefore more challenging to achieve good
cross-scene performance than to obtain good cross-user performance.
When tested in free-viewing conditions (Table 3), our model achieves a
good cross-scene performance, which is close to its cross-user perfor-
mance, because the free-viewing dataset only contains dynamic scenes
(Sect. 6.4).

Limitations: We identified several limitations of our model. First,
our model was trained on the dataset that was collected during a visual
search task. Our model cannot be directly applied to other kinds of tasks,
such as text editing or assembly task because different tasks require
different task-specific gaze behaviors. To forecast eye fixations in other
tasks, our model needs to be retrained using the corresponding task-
related data. In addition, in the fixation prediction network, we used
pre-computed cluster centers of users’ fixations (Sect. 5.3). However,
it may be better to set the cluster centers as our model’s parameters
and learn these parameters in the training process than to utilize the
pre-computed cluster centers. Furthermore, the task-related objects
(targets and distractors) in our scenes were sparse and the dynamic
objects (animals) were set to move at a normal speed (random walk).
Our model therefore may not directly handle more cluttered scenes or
faster-moving objects. We plan to explore such settings in future work.
Finally, in the data collection process, we set the test scenes to silent in
order to avoid auditory disturbance. Taking the influence of sound on
eye fixations into consideration may further boost the performance of
our model.

Future Work: Besides overcoming the above limitations, many
potential avenues of future work exist. First, it will be interesting
to explore the problem of forecasting users’ long-term eye fixations.
Existing methods are unable to accurately forecast users’ long-term
visual attention (Fig. 12) and it is therefore meaningful to derive more
accurate long-term fixation prediction models. In addition, there is still
some room to improve our model’s performance by considering other
factors related to users’ visual attention. For example, if the information
on users’ body movements is available, we can extract features from
this information and employ the extracted features to facilitate fixation
prediction because there exists a coordination between users’ eye move-
ments and their body movements [42]. Moreover, in order to provide a
general solution for existing eye tracking systems, we only acquired
users’ historical gaze positions from the eye tracker to forecast fixations
and this ensures our model is applicable to any type of eye tracker.
However, there exist many kinds of eye tracking technologies such as
eye image-based eye trackers [25,53] and corneal reflection-based gaze
estimators [55, 56]. For a specific eye tracker, we can also combine



other features provided by the eye tracker, e.g. users’ historical eye
images, to facilitate eye fixation prediction. Furthermore, our dataset
may still be insufficient for training robust fixation forecasting models
that are flexible to work for any type of virtual environment. Therefore,
to increase the richness of our dataset, we plan to explore other differ-
ent scenes as well as actual VR applications in the future. Finally, our
analysis and our model are restricted to immersive virtual environments.
It will be interesting to analyse and forecast users’ eye fixations in other
systems like augmented reality (AR) and mixed reality (MR) systems.
In AR and MR interfaces, the task-related objects may be situated in
the real rather than the virtual world, e.g. in a task that requires the
user to search for a person in the real world. In such cases, we could
employ object detection methods to obtain the location and type of
the task-related object, e.g. use face detection algorithm to extract the
information on the potential targets from the background in a person
search task, and utilize that information to forecast human eye fixations.
Our model has the potential to be converted to such systems.

8 CONCLUSION

In this work, we focused on the problem of forecasting human eye
fixations in task-oriented virtual environments. We first presented
a gaze dataset of users performing a visual search task in VR and
showed that eye fixations are strongly correlated temporally as well as
with task-related objects, saliency information of the VR content, and
head rotation velocities. Based on these insights, we proposed a novel
method to forecast users’ fixations in the near future that outperformed
the state-of-the-art method in both task-oriented and free-viewing con-
ditions by a large margin. As such, our work represents an important
advance and guides future research on task-oriented attention analysis
and prediction in immersive virtual environments.
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