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ABSTRACT
An ever-growing body of work has demonstrated the rich informa-
tion content available in eye movements for user modelling, e.g. for
predicting users’ activities, cognitive processes, or even personality
traits. We show that state-of-the-art classifiers for eye-based user
modelling are highly vulnerable to adversarial examples: small ar-
tificial perturbations in gaze input that can dramatically change a
classifier’s predictions. On the sample task of eye-based document
type recognition we study the success of adversarial attacks with
and without targeting the attack to a specific class.
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1 INTRODUCTION
Recent advances in mobile eye tracking [Kassner et al. 2014; Ton-
sen et al. 2017] and gaze estimation using off-the-shelf cameras
[Zhang et al. 2017, 2019] have spurred research on eye-based user
modelling. That is, the prediction of various user characteristics
from eye movements, such as users’ activities [Bulling et al. 2010],
cognitive processes and states [Bulling and Zander 2014; Sattar et al.
2015], or personality traits [Hoppe et al. 2018]. Combined with the
continuing integration of eye tracking into head-mounted virtual
and augmented reality headsets, this promises a range of exciting
new applications, such as mental health monitoring [Vidal et al.
2012] or life logging and quantified self [Kunze et al. 2013a, 2015].
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However, with widespread availability of gaze data comes an
ever-increasing risk of misuse and privacy attacks. Examples for
adversaries are headset manufacturers trying to obtain personal in-
formation about consumer interests or preferences, malicious appli-
cations running on the computer to which the headset is connected
that spy on users’ activities, or third parties launching targeted
attacks on gaze data. Despite these diverse threats, research has
mainly focused on ocular biometrics [Nigam et al. 2015] or secure
user authentication using eye movements [Holland and Komogort-
sev 2011]. Researchers have only recently started to study these
threats and proposed first solutions to making eye tracking privacy-
aware – both at the hardware [Steil et al. 2019b] and software [John
et al. 2019; Liu et al. 2019; Steil et al. 2019a] level.

This work contributes another building block to this emerging
research field of privacy-aware eye tracking by studying, for the first
time, adversarial attacks. Such attacks create small perturbations in
gaze data input, better known as adversarial examples, that dramati-
cally change the classifier’s predictions. Adversarial examples have
only recently started to being studied in the intersecting research
field of computer vision and security [Papernot et al. 2018] but
have not yet received any attention in the eye tracking commu-
nity. We study adversarial attacks on classifiers for eye-based user
modelling for the sample task of document type recognition from
eye movements during reading [Kunze et al. 2013b]. We picked
this task given that reading is a truly pervasive activity, widely
studied in different fields including eye tracking research, and has
been the subject of a recent study on using differential privacy
for privacy-aware eye tracking [Steil et al. 2019a]. We study the
feasibility and performance of this attack in different scenarios that
we carefully chose to represent real-world use cases: Attacks with
and without knowledge about the internal classifier gradients as
well as with and without targeting the attack to a specific class. Our
results demonstrate that classifiers can not be trusted blindly since
they can be mislead by adversarial examples.

2 CREATING ADVERSARIAL EXAMPLES
Following previous work [Bulling et al. 2012, 2010, 2013; Steil et al.
2019a], we directly targeted Support Vector Machines (SVM) with
radial basis function (RBF) kernels. Additionally, we indirectly tar-
geted Random Forests (RF) [Kunze et al. 2013b] by generating ad-
versarial examples against an SVM fitted on the same training data
to study transferability. We compute adversarial examples with the
Fast Gradient Sign Method [Goodfellow et al. 2014] (FGSM), a state-
of-the-art method that is independent of neural network structures
but only uses gradients which are well-defined for SVM. FGSM
computed the gradient and perturbed the sample in this direction,
we used its minimal mode which repeatedly computes a growing
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adversarial perturbation until the sample is misclassified. We opted
for the minimal attack because it lead to smaller perturbations.

The L2 norm was used to measure perturbations, it is wildly used
for the generation of adversarial examples and remains small under
many small changes to the features [Carlini and Wagner 2017]. We
kept the perturbation per step εs at 0.1 during the experiments and
evaluated two different methods to find the εmax hyperparameter
for FGSM: The general εmax was chosen such that the average
accuracy over multiple participants was lowest, this corresponds to
an attack without prior knowledge about the target’s data.We chose
the person-specific εmax by determining the maximal perturbation
for the lowest accuracy for each person individually. The goal of
the untargeted attack is to misclassify the sample into any of the
other classes, while targeted attacks perturbed samples of one class
only such that they were misclassified as one specific other class.

3 EVALUATION
We used the public dataset by [Steil et al. 2019a] that contains
recordings of 20 participants reading three different document types
(comic, newspaper, textbook) in virtual reality. We first detected
fixations using a dispersion-based algorithm, and then extracted 52
high-level features from the basic eyemovements following [Bulling
et al. 2010], using a sliding window. Twomore features from [Kunze
et al. 2013b] were added, to give a general estimate of the reading
direction and distance covered during the time window.

SVM Training. We studied the task of recognising different doc-
ument types from eye movements during reading. Using sklearn’s
SVM implementation [Buitinck et al. 2013], we trained with leave-
one-person-out cross-validation. The optimal window size of 45
seconds was selected based on the validation accuracy on 200 sam-
ples per participant and document type. We kept the penalty pa-
rameterC on the error term at its default of 1.0 and the RBF-kernel
hyperparameter γ that controls the locality of the kernel at 1

54 .

Random Forest Training. Similarly to before, we selected the
best window size (45 seconds again) using leave-one-person-out
cross-validation on the same data split into training, validation, and
test data. We evaluated for the key hyperparameters, namely the
number of trees (100, 50, 10, 200) and the number of samples per
leaf (50, 10, 100, 5) to avoid overfitting.

3.1 Results
Attack Success: The accuracy after attack is well below chance

level of 1/3 with only one exception, thus the SVM is vulnerable to
our attack. The accuracy of general and person-specific choice of
εmax are very close, thus we show the general choice of εmax in
Figure 1. That means, it is not necessary to know data of the target
for mounting a successful attack.

Distance Evaluation: In oder to evaluate the consequences of
our adversarial perturbation, we measured the euclidean distance
between all test samples before the attack. This naturally occurring
distance between samples was compared to the distances between
test samples and their corresponding perturbed version. We studied
three different ways to select the FGSM hyperparameter εmax :
person-specific, general or Additionally, we selected the smallest
εmax such that on average over all participants, an accuracy of 0.3 is

Figure 1: Accuracies after attacks on SVMwith FGSM (larger
markers) and transfer to RF (smallermarkers). Different col-
ors and markers show different document types under at-
tack. The dashed black line visualizes the chance level.

reached. If the goal is only guessing accuracy, smaller perturbations
often suffice. We observe that in most cases, on average the distance
between original and perturbed point is smaller than the average
distance between benign test points. The p-values of Welch’s t-test
between the two distributions of distances are below 0.01 except for
the targeted attacks misclassifying comic as textbook and textbook
as comic, respectively. This demonstrates that the perturbations we
computed are indeed mostly “small”.

Transferability: Finally, we studywhether the perturbations carry
over to a different family of classifiers, namely, RF classifiers, who
had a similar accuracy on test data. So we used RF to classify the
adversarial examples against the SVM. We observe that the accu-
racy drops after the attack, but only rarely below guessing accuracy
for RF. That means, the decision boundaries between SVMs and RF
are similar enough for some samples to transfer, however, not so
similar that all of them carry over. The distances are similar to those
observed for the SVM, but in some cases higher. We conclude that
knowledge on the type of classifier does increase attack accuracy,
however, hiding the type of classifier does not mitigate all attacks.

4 DISCUSSION AND CONCLUSION
Our results demonstrated that it is easy to fool classifiers for eye
tracking data, thus we can not rely on their outputs. For desirable
classifications, our findings raise the question whether the current
techniques are robust enough for naturally occurring noise. Phrased
differently, knowing that there exist small shifts in the data that
change the classifiers’ outcomes, how can we ensure these shifts do
not occur naturally and lead to failure of the eye tracking system?
On the other hand, for undesirable classifications such as extraction
of privacy-sensitive information or activity surveillance, adversarial
examplesmay be away to circumvent these classifications.We leave
it to future work to explore the use of adversarial examples as a
protection mechanism.
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