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Abstract: Adaptive visualization and interfaces pervade
our everyday tasks to improve interaction from the point
of view of user performance and experience. This ap-
proach allows using several user inputs, whether physi-
ological, behavioral, qualitative, or multimodal combina-
tions, to enhance the interaction. Due to the multitude
of approaches, we outline the current research trends of
inputs used to adapt visualizations and user interfaces.
Moreover, we discuss methodological approaches used in
mixed reality, physiological computing, visual analytics,
andproficiency-aware systems.With thiswork,weprovide
an overview of the current research in adaptive systems.

Keywords:Physiological computing, adaptive systems, hy-
brid user interfaces, multimodal interaction

ACM CCS: Human-centered computing → Interaction de-
sign→ Interaction design theory, concepts and paradigms

1 Introduction

The first stage of implementing adaptive interaction sys-
tems, according to the definition, is to define the desired
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“goal.” In a system (a set of connected variables), such
a goal is a state or multiple states (specified values for
those variables at a certain point in time) that are chosen
above others [10]. In order to achieve this, such systems re-
quire developing ausermodel that represents preferences,
capacities, and affective processes and their relationship
with the task at hand. This cybernetic process requires two
components: a sensing component that detects the cur-
rent state of the system and an actuation component that
guides the system toward the desired goal depending on
the sensing component.

The user provides multimodal information, both ex-
plicit and implicit, that can drive an interface or visual-
ization adaptation toward a (shared) goal. To date, adap-
tive systems have mainly exploited direct user input as in-
teraction modalities: the computer reacts only to explicit
commands provided by the user, e. g., mouse, keyboard,
speech, touch. However, recent approaches are increas-
ingly considering implicit aspects of the user, such as their
cognitive processing capabilities [32] and the user’s phys-
iological state [17]. For example, in the field of visualiza-
tion, a personalized adaptation based on various cognitive
functions (such as perceptual speed andworkingmemory)
impacts the user’s performance [59] and different modali-
ties of information processing require different visualiza-
tions [58]. This complements traditional approaches of
considering implicit user data based on their profile, e. g.,
interests or prior knowledge.

Monitoring the user’s physiological state to infer and
adapt interaction will couple them to the user’s goals and
thus, enable developers to design biocybernetic loops. The
user’s physiological data are processed online and classi-
fied to trigger the adaptive system, which is then in charge
of performing adaptive actions in the interface [17]. Fair-
clough [16] proposed first and second-order adaptation
loops. The first-order adaptation consists of a loop that be-
gins with monitoring the user’s condition. The loop com-
pletes by executing adaptive actions. This first-order adap-
tation necessitates a set of rules that link each user’s cur-
rent condition to at least one adaptive action. The second-
order adaptation encompasses detecting changes as a di-
rect result of adaptation. It allows the system to acquire
information on the user’s state and preferences over mul-
tiple iterations. Thus, it allows the system to adjust the ac-
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tions to a single user. And after a phase of reciprocal cou-
pling, it leads to system and user co-existence.

Biocybernetic approaches do not consider individual
users as static entities. Therefore, we describe such dy-
namic systems as continuously updating systems using
incoming environment information and, thus, changing
user requirements and goals [14, 62]. Such dynamics are
critical, especially when the update of the adaptive inter-
face is not under the explicit control of the user but de-
pends on the characteristics of the interaction itself. Thus,
both the adaptive interface and the user learn from each
other. Mutual adaptation dynamics can lead to complex
interaction patterns, affecting the adaptive system’s us-
ability. A paradigmatic example consists of adaptive inter-
faces designed to improve the user’s performance by auto-
matically reducing the error associated with a given task,
e. g., an adaptive touch keyboard [19]. If an interface fails
to incorporate the user’s learning capability, the perfor-
mance of the joint system will likely be even worse than
that of a user in isolation. In such cases, the contribution
of the adaptive interface may result in error overcorrection
and hence in a potentially unstable interaction [4]. In con-
trast, the system’s features will change according to the
characteristics of the user, for example, by providing only
partial correction and taking into account the learning rate
associated with the user over the entire course of the in-
teraction. In the future, such a joint adaptation approach
can positively improve the outcome of the interaction and
the user’s subjective experience. Thenext generation of in-
telligent systems will encompass increased autonomy and
adaptability [26] facilitating proactive and implicit interac-
tion with users [1].

This work provides an overview of applications
in adaptive content, interaction, and visualization. We
specifically address which information researchers used
for adaptation, withwhich purpose of using such informa-
tion, and lastly, which domains are feasible for adaptive
systems in the human-computer interaction (HCI) and the
visualization domains.

2 Technologies for adaptation

Systems nowadays may draw from various information to
infer the user’s current state and environment. Such infor-
mation ranges from static adaptation using user profiles to
context-aware systems [12, 53], using the user’s surround-
ings, and even ubiquitous sensing technologies. The last
category potentially provides deep insights into a person’s

cognitive ability ormotoric skills. In the following, we pro-
vide a short overview regarding currently common physi-
ological measures leveraged in adaptive interfaces.

2.1 Extracting features for adaptation

Among the psychophysiologicalmeasures useful for adap-
tive interfaces, electroencephalography (EEG), eye track-
ing, electrodermal activity (EDA), and electromyography
(EMG)havegarnered themost interest. Their sensors’ com-
paratively small size and ability to measure physiological
activity non-invasively make them more likely to be incor-
porated into wearable consumer devices, such as glasses,
wristwatches, and headbands.

EEG records electric potentials from the scalp, which
reflects brain activity. Machine learning (ML) can extract
event-related activity to estimate cognitive workload [33],
attention allocation [60], or affective states [40]. Brain-
machine interfaces [8] and user state estimation systems
use these ML-generated estimates. However, such systems
have to be considered in light of current challenges such
as the need for generalizable applications of classification
methods online [41], improvement of transfer learning,
and application of new approaches such as deep learning
or Riemannian geometry-based classifiers [36].

Similarly, gaze behavior can indicate high-level cog-
nitive processes, see early work by Deubel [11] and Hoff-
mann [25]. Recent work analyzed specific eye movements
and gaze patterns to infer, for instance, user activities and
cognitive states. Jacob and Karn [29] and Duchowski [13]
provide in-depth overviews of this domain.

When the goal is to infer responses to novel stimuli,
cognitive workload, and stress, the choice of EDA mea-
suresmight be preferable as a noninvasive and easy-to-use
method. EDA measures are the joined pattern of its pha-
sic and tonic components [21]. Phasic Skin Conductance
Responses (SCRs) reflect discrete and stimulus-specific re-
sponses to evaluate the novelty, importance, and inten-
sity of the stimuli utilized [44]. As indexed via Skin Con-
ductance Level (SCL), tonic activity is an inertial and slow
response particularly well suited to evaluate the effect of
continuous stimuli, i. e., task. Therefore, HCI has used it to
quantify, for instance, changes in arousal under high cog-
nitive load [34] or stress [6].

Besides inferring cognitive processes, measuring the
user’s motoric responses can be especially useful in en-
abling a system to adapt to the user’s abilities and po-
tential actions [39]. By measuring muscular activity, EMG
can provide insights into the working mechanism of mo-
tor tasks. Using EMG measures for adaptation allows for
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providing user-tailored feedback, ranging from detecting
emotional states through facial EMG [61], over gesture
recognition [52], to an adaptive tutoring system for motor
tasks [30].

Finally, sensor fusion multi-model adaptive systems
can often achieve more robust adaptation. For example,
Putze et al. [48] showed that combining EEG recordings
with eye-tracking addresses the Midas-Touch problem in
gaze-based selection by estimating whether a fixation was
purposeful or not. Moreover, combining EMG with EEG,
Haufe et al. [23] showed that this leads to faster automatic
braking in a driving simulator than using EEG alone.

2.2 Adapting the interface and visualization
Although there have been earlier models for adaptive
systems [22, 54], we consider three critical adaptation
elements: content, presentation, and interaction. When
adaptive systems adjust their content, which relates to
users’ preferences and engagement, they must consider
the user’s prior knowledge and interest. Such dimension
might involve notification design and recommendations,
especially considering the exploratory visual analytics
process [51].

Secondly, presentation adaptation affects user inter-
faces (UIs) or visualizations according to users’ spare per-
ceptual capacity, discomfort and, stress level by simplify-
ing displayed information, luminance, or other properties.

Thirdly, interaction adaptation is a broader field as
it might encompass different paradigms. For example, in
multitasking environments, users might experience tasks
being switched off [47], see the number of options change
in a decision-making task [46], or modify the interaction
modality, i. e., from gesture to hand-free interaction.

3 Use cases and applications
Here, we provide a brief overview of adaptive visualization
and interfaces with use cases and applications from our
work, specifically targeting content-basedadaptation from
physiological data, adaptation of visualization presenta-
tion from physiological data, and interaction adaptation.

3.1 Content adaptation
In the following, we present and discuss systems based
on eye-tracking features, that adapt to support language
proficiency, increase recommender systems’ performance
based on inferred users’ interest, or help visual analytics.

Figure 1: User interacting with a language-aware interface [31].

Figure 2: Screenshot of a recommender system with eye-tracking
support [50]. Gaze is used as indicator for interest and mapped to
the underlying data.

3.1.1 Adaptive displays based on language proficiency

Globalizationmeans that interfaces are prevalent in amul-
titude of different languages. Hard-to-access language cor-
rection can lead to user aversion. Consequently, there is
merit in creating systems capable of estimating a user’s
language proficiency and displaying content appropriate
to the user’s abilities.

Recently, Karolus et al. [31] explored the potential of
using a user’s gaze properties to detect whether the in-
formation is presented in a language the user under-
stands (see Figure 1). Robustness and feasibility with low-
grade eye-tracking equipment were important aspects of
this work. They proposed technical specifications for the
recording equipment and the interaction period using ro-
bust gaze features, including fixation and blink duration.
They found that a few seconds of recorded gaze data is suf-
ficient to determine if a user can speak the displayed lan-
guage.

3.1.2 Gaze as input for recommender systems

Silva et al. [56] sketched the possibility of back-propa-
gating eye-gaze through the visualization pipeline and
mapping it onto the underlying data. According to the eye-
mind hypothesis, this viewed data is of interest to the user.
Recommender systems, such as the one in Figure 2, can
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take advantage of such implicitly selected data to suggest
helpful visualizations [50]. Recommendations based on
such data fit the user’s current interest and might, by ex-
tension, also fit their current task. However, a robust infer-
ence of an explicit task is not trivial, but a recommender
systembasedondata interest can suggest the correct views
for any generic and unidentified task.

3.1.3 Eye tracking support in visual analytics systems

Visual analytics is a design framework for interactive vi-
sual displays to facilitate the exploration of, and insight
into, data sets. They rely on a loop that includes the viewer
with all their prior knowledge, interests, and tasks. This al-
lows the user to alter the selection of data, adjust param-
eters for data processing, and adapt the visualization on-
the-fly to cater to current needs.

With the added information from eye-trackers, such
visual analytics systems can augment existing interaction
techniques [56]. This can include, for instance, gaze as
additional cursors for interaction through speech or dis-
ambiguation of targets when pushing buttons on hand-
held controllers. In addition,with the advent of coarse eye-
tracking for devices with front-mounted cameras (e. g.,
tablets and phones), existing visual analytics software can
“retro-fit” gaze data without changing the actual hard-
ware. For example, law enforcement agents already use
software on car-mounted tablets to provide them with
overviews of occurrences in their districts. In such a sce-
nario, even coarse gaze data can check whether relevant
events have been overlooked and provide adaptive visual-
izations to attract the agent’s attention.

3.2 Presentation adaptation
In this section, we highlight the work of adaptive systems
that adapts presentation based on users’ physiological in-
put, such as EDA, to support user experience, or to support
processing of relevant information, i. e., notifications.

3.2.1 Adaptation of virtual reality visual complexity
based on physiological arousal

Virtual reality (VR) is rapidly gaining popularity for social
or collaborative virtual environment applications. Such
settings envision the involvement of realistic Non-Player
Characters (NPCs), suchas virtual crowdswithhuman-like
behavior. However, highly dynamic environments could
provide task-irrelevant elements that negatively increase a

Figure 3: Flowchart of the physiological loop used by Chiossi
et al. [9]. The visual complexity (in the form of NPCs) adapts accord-
ing to changes in the EDA calibrated from a baseline recording (Δb).
The adaptation function is called every 20 secs.

user’s cognitive load and distractibility. Thus, monitoring
users’ physiological activity and adapting the interaction
is an emerging research trend to optimize user experience
or performance.

The goal of physiological control loops is to detect de-
viations from the optimal physiological state that influ-
ence the adaptation of the features of the environment
or tasks to drive users towards a more desirable state.
Here, Chiossi et al. [9] focused on a peripheral measure
of physiological arousal, i. e., EDA. Physiological arousal
correlates with task demands and engagement in a multi-
component task [18] and can be affected by proxemics
of NPCs both in VR [35] and augmented reality (AR) [27].
Hence, the stream of NPCs was adapted in response to
changing EDA levels of users while being engaged in a
dual-task setting. They processed the EDA data only using
an average moving window of 20 sec. For user-dependent
adaptation, the adaptive algorithm adjusts the visual com-
plexity to a baseline slope recording recorded at the be-
ginning of the experiment. Thus, when the EDA slope
was larger than the baseline slope, 2 NPCs were removed,
indicating increased arousal. On the contrary, 4 NPCs
are added to the environment if the system detected de-
creased arousal. Figure 3 visualizes the adaptation algo-
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Figure 4:Müller et al. [42] collected perceivability and behavioral data on realistically looking synthesized desktop images. They used this
data to identify the factors that impact the noticeability of notifications. This allowed them to develop a computational model of noticeabil-
ity that can predict noticeability maps for a given desktop image and user attention focus. These maps visualize the locations at which a
notification is likely to be missed (red) or likely to be seen (green).

rithm. Thus, they supported the user experience by lever-
aging visual complexity, i. e., increased system accep-
tance, competence, and immersion.

On the surface, thefindings of Chiossi et al. [9] only im-
pact the design of social VR scenarios. However, such re-
sults can generalize to the design of information visualiza-
tion patterns to help users inmixed reality (MR) [57]. Thus,
physiologically-aware systems can potentially personalize
environments for the user, improving the user experience.
Furthermore, in the visualization domain, VR complexity
can burden users; thus, a physiological-adaptive system
varying the information load according to users’ workload
could foster the viability and usefulness of applications.

3.2.2 Adapting notifications to visual appearance and
human perception

Users benefit from desktop notifications showing them
their incoming messages, upcoming calendar events, or
other important information. Notifications need to attract
and divert attention from a primary task effectively to en-
sure that users notice important information. At the same
time, notifications are embedded into the visual design of
the user interface and are subject to aesthetic consider-
ations. However, design decisions that are also currently
static, i. e., do not adapt at runtime, can severely impair
the user’s ability to perceive notifications.

Müller et al. [42] presented a software tool to auto-
matically synthesize realistically looking desktop images
for major operating systems and applications. These im-

ages allowed them to systematically study the noticeabil-
ity of notifications during a realistic interaction task. They
found that the visual importance of the background at the
notification location significantly impacts whether users
detect notifications. Their work also introduced the idea
of noticeability maps: 2Dmaps encoding the predicted no-
ticeability across the desktop. The maps inform design-
ers how to trade-of notification design and noticeability.
In the future, such automatically predicted noticeability
maps could be used in UI design and during runtime to
adapt the appearance and placement of desktop notifica-
tions to the predicted user noticeability.

3.3 Interaction adaptation

In the last section, we present relevant work that shows
how adaptive systems can support interaction for mid-
air or multimodal interactions in immersive MR environ-
ments.

3.3.1 Adapting the 3D user interfaces for improved
ergonomics

Interactive MR applications surround the user with virtual
content that can be manipulated directly by reaching for
it with the tracked hand or controllers. Such mid-air in-
teraction techniques are beneficial, as they feel natural,
but they may lead to physical strain, muscle fatigue, and
challenging postures [5, 37]. The XRgonomics toolkit [15]
addresses these issues by visualizing the ergonomics of
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Figure 5: The XRgonomics toolkit [15] visualizes the cost of inter-
action for each reachable point in the user’s interaction space,
through color coding (K) from blue (most comfortable) to red (least
comfortable) (L). The applied metric is selected in a dropdown menu
(A), and the computed value can be adapted for the user’s arm di-
mensions (C). For a better visibility, the voxel size can be adapted
(B), and the range of values to visualize can be limited along all
three axes (E-G) to show only individual regions or slices of the
space. Further, the user can retrieve the “optimal” voxel with the
lowest ergonomic cost (D). Finally, the visualization of the avatar can
be deactivated (H), and three sliders enable control of the perspec-
tive (I).

the user’s interaction space (see Figure 5), allowing UI de-
signers to create interfaces that are convenient and easy
to manipulate. Further, it supports the automatic adapta-
tion of UIs so that interactive elements remain within easy
reach while the user moves about in a changing physical
environment. The ergonomicsmetrics currently supported
in XRgonomics are RULA [38], Consumed Endurance [24],
and muscle activation [3].

Prior research has explored ergonomics [3, 24, 38] and
while the resulting metrics help evaluate existing UIs, it is
difficult to use them for generating novel UI layouts. Fur-
ther, the formulated design recommendations can be chal-
lenging to interpret and apply, particularly if the ideal in-
teraction space is unavailable, e. g., due to the user’s phys-
ical environment.

To address this, Belo et al. [15] present a toolkit to vi-
sualize the interaction cost in the user’s entire interaction
space by computing ergonomics metrics for each reach-
able point in space. Their work shows a half-sphere of vox-
els around the user, color-coded to reveal the ergonomics
of reaching for that position. Thus, the toolkit allowsUI de-
signers to inspect the interaction space and identify ideal

placements for various interactive elements. The toolkit
further allows the definition of constraints, e. g., allowing
the designer to define areas of the interaction space that
are not available for placement of interactive virtual con-
tent, for example, due to physical obstacles in the user’s
environment. Based on that, the toolkit can recommend
the ideal position with the best ergonomic properties for
reaching with the hand. As this computation is feasible in
real-time, the toolkit API can be used for dynamic adap-
tation of UIs, depending on the user’s changing physical
environment or varying visible space. For example, con-
sider a UI element that should always remain within the
user’s field of view in an AR scenario. The user is wear-
ing a head-mounted display (HMD), and as they turn their
head to look around, using the view frustum of the HMD,
constraints arise in the available interaction space. The
toolkit automatically computes themost ergonomic place-
ment for the respective UI element within this available
volume, keeping it in easy reach for the user.

Beyond improving the ergonomics of mid-air interac-
tion, this approachmay be applied to achieve the opposite
goal of increasing physical effort to reach a UI element or
virtual object, e. g., with the aim to train particular mus-
cles. This may contribute to rehabilitation or be applied in
exergame scenarios, as proposed by [43].

3.3.2 Hybrid user interfaces for augmented reality

The complexity of interaction in AR environments pro-
vides many opportunities for adaptation, such as adapt-
ing visualizations based on the user’s physical surround-
ings (e. g., Shin et al. [55]), within situated analytics (e. g.,
Fleck et al. [20]), or by considering the devices available in
the user’s workspace (e. g., STREAM [28]). One possibility
of adapting visualizations and interfaces to the user can be
realized through hybrid user interfaces that combine the
advantages of heterogeneous devices (e. g., head-mounted
AR devices and handheld tablets), creating the ability to
facilitate multiple coordinated views across different real-
ities for visual analytics.

For example, STREAM [28] combines an immersive AR
environment using an AR headset with a spatially-aware
tablet for interacting with 3D parallel coordinates visual-
izations, consisting of linked 2D scatter plots. Here, the
AR headset allows users to see the visualization in stereo-
scopic 3D space. At the same time, the tablet provides fa-
miliar touch interaction on individual 2D components of
the visualization, e. g., 2D scatter plots, see Figure 6. Fur-
thermore, to reduce the cognitive demandwhen switching
between both interfaces, STREAM automatically adapts
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Figure 6: STREAM [28] combines spatially-aware tablets with head-mounted AR displays for visual data analysis using a 3D parallel coordi-
nates visualization. STREAM’s adaptation mechanisms allow users to seamlessly switch between the AR visualization and the tablet visual-
ization without losing context. For example, the user on the right holds their tablet vertically, allowing STREAM to adapt their AR scatter plot
with the tablet’s visual space. In contrast, the collaborator’s (left user) AR visualization is unaffected.

the representation of both interfaces to the user’s implicit
interaction by tracking the tablet’s position in space: Once
a user holds their tablet in front of them (i. e., indicating
that the user wants to switch between devices), the se-
lected 2D component of the visualization in AR (e. g., a
2D scatter plot) rotates toward the user’s viewing direc-
tion, while the tablet adapts its content to show the same
2D component on screen—effectively merging both visual
spaces into one interaction space. This adaptation allows
users to seamlessly switch between AR and tablet visual-
ization without losing context.

4 Outlook

Adaptive interfaces play a crucial role in developing new
interaction paradigms, especially when improving perfor-
mance or user experience. With this overview, we intro-
ducedhowadaptive interfacesmight leverage various user
inputs for improved performance and UX, easier learn-
ing, and improved information engagement. Our overview
presents current adaptive contents, interactions, and pre-
sentations applications. It serves as an initial design space
to showcase how current systems use inputs for adapta-
tion and hints at how future systems might adapt to the
users’ actions. For adaptation purposes, current work fo-
cuses on theusage of physiological input for either content
or presentation, motion tracking data and ergonomic met-
rics for interaction.

We highlight that in the future, especially with sen-
sor fusion, multi-model adaptive systems are important to
consider as they have a high chance of capturing the full
context for the user. Therefore, such systems have higher
success potential.

Future work will aim to formalize interaction para-
digms that can generalize across application domains and
classify which combinations of inputs might be more suit-
able for multi-model adaptive systems.

With this goal in mind, it is first necessary to clarify
that the basis for adaptation accurately represents and re-
lates to users’ states, e. g., physical discomfort and focused
attention. This relationship is especially troublesome for
physiological measurements and their construct valid-
ity [7]. However, we cannot claim a one-to-one explana-
tory relationship with the construct of interest. Therefore,
the amount of diagnostic accuracy necessary for adaptive
systems will inevitably vary between systems until an ac-
ceptable cost-benefit ratio is achieved [17].

Second, current systems focus on a single user; how-
ever, in the future, we envision that dynamically adapting
to multi-user scenarios will improve collaboration [2]. It is
unclear if the results from the single-user investigationwill
hold reliably inmulti-user scenarios, e. g., using the user’s
EDA for adaptation.

Third, data privacy is a central concern for users of
adaptive systems that rely on input from users who do not
control most of their physiological activity, i. e., physiolog-
ical computing systems. Adaptive systems present signifi-
cant potential for asymmetry in data protection [49], i. e.,
the system may not disclose to the user where his or her
data are stored or who has access to this data. Moreover,
adaptive control loops aim to manipulate users’ states to-
ward a positive goal. Here, the debate is not over on the
adaptation’s direction but on who keeps control over the
adaptive process [45]. These considerations bolster claims
that mutual accountability [45] and giving users authority
over the system are fundamental conditions that necessi-
tate future work.
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