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Abstract. Structure from Motion (SfM) and semantic segmentation are
two branches of computer vision. However, few previous methods inte-
grate the two branches together. SfM is limited by the precision of tradi-
tional feature detecting method, especially in complicated scenes. As the
research field of semantic segmentation thrives, we could gain semantic
information of high confidence in each specific task with little effort. By
utilizing semantic segmentation information, our paper presents a new
way to boost the accuracy of feature point matching. Besides, with the
semantic constraints taken from the result of semantic segmentation, a
new bundle adjustment method with equality constraint is proposed. By
exploring the sparsity of equality constraint, it indicates that constrained
bundle adjustment can be solved by Sequential Quadratic Programming
(SQP) efficiently. The proposed approach achieves state of the art accu-
racy, and, by grouping the descriptors together by their semantic labels,
the speed of putative matches is slightly boosted. Moreover, our approach
demonstrates a potential of automatic labeling of semantic segmentation.
In a nutshell, our work strongly verifies that SfM and semantic segmen-
tation benefit from each other.

Keywords: Structure from Motion · Semantic segmentation
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1 Introduction

Structure from Motion (SfM) has been a popular topic in 3D vision in recent
two decades. Inspired by the success of Photo Tourism [1] in dealing with a
myriad amount of unordered Internet images, respectable methods are proposed
to improve the efficiency and robustness of SfM.

Incremental SfM approaches [1–7] start by selecting seed image pairs that sat-
isfy two constraints: wide baseline and sufficient correspondences, then repeat-
edly register new cameras in an incremental manner until no any camera could
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be added in the existing scene structure. This kind of method achieves high accu-
racy and is robust to bad matches thanks to the using of RANSAC [9] in several
steps to filter outliers, but suffers from drift in large-scale scene structures due
to the accumulated errors. In addition, incremental SfM is not efficient for the
repeated bundle adjustment [10].

Global SfM approaches [11,12] estimate poses of all cameras by rotation
averaging and translation averaging and perform bundle adjustment just one
time. However, Global SfM approaches are sensitive to outliers thus are not as
accurate as incremental approaches.

Far more different from incremental SfM and global SfM approaches, hierar-
chical SfM methods [13–16] start from two-view reconstructions, and then merge
into one by finding similarity transformation in a bottom-up manner.

While a vast of efforts are taken to improve the accuracy of SfM, most SfM
approaches are affected greatly by the matching results. The success of incre-
mental SfM is mainly due to the elimination of wrong matches in several steps,
such as geometric verification, camera register and repeatedly bundle adjust-
ment. Owing to executing only one bundle adjustment, global SfM is more eas-
ily affected by outliers. Thus how to filter outliers out still be a key problem in
global SfM.

Recently, more and more works concentrate on semantic reconstruction [17,
18]. They cast semantic SfM as a maximum-likelihood problem, thus geometry
and semantic information are simultaneously estimated. So far, semantic 3D
reconstruction methods have been limited to small scenes and low resolution,
because of their large memory and computational cost requirements. Different
from that, our works aim at large scale 3D reconstruction from UAV images.

From our perspective, the state-of-the-art SfM methods still have insufficient
geometric/physical constraints. Semantic information is considered as additional
constraints for robust SfM process to enhance its accuracy and efficiency. Our
contributions are mainly two folds: (1) we propose to fuse the semantic informa-
tion into feature points by semantic segmentation (2) we formulate the problem
of bundle adjustment with equality constraints and solve it efficiently by Sequen-
tial Quadratic Programming (SQP).

Our work expedite the cross field of Structure from Motion and semantic
segmentation. Also, to the best of our knowledge, our work achieve state-of-the-
art in both efficiency and accuracy.

2 Related Work

2.1 Structure from Motion

With the born of Photo Tourism [1], incremental SfM methods are proposed to
deal with large scale scene structures. Though many efforts (Bundler [3], Visu-
alSfM [5], OpenMVG [6], Colmap [7], Theia [8]) are taken, drift and efficiency
are still the two main limitations of incremental SfM. Besides, the most 2 time
consuming parts of reconstruction are feature matching and repeated bundle
adjustment [10].
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As mentioned in Multi-View Stereo [19], the integration of semantic infor-
mation will be a future work for 3D reconstruction. Recently, it appears more
and more works about semantic reconstruction. As the first work of semantic
SfM is based on geometric constrains [17], the later work [18] takes advantage
of both geometric and semantic information. Moreover, they [17,18] deem scene
structure as not merely points, but also regions and objects. The camera poses
can be estimated more robustly.

Haene et al. [20] propose a mathematical framework to solve the joint seg-
mentation and dense reconstruction problem. In their work, image segmentation
and 3D dense reconstruction benefit from each other. The semantic class of
the geometry provides information about the likelihood of the surface direction,
while the surface direction gives clue to the likelihood of the semantic class.
Blaha et al. [21] raise an adaptive multi-resolution approach of dense semantic
3D reconstruction, which mainly focuses on the high requirement of memory and
computation resource issue.

2.2 Outdoor Datasets

Street View Dataset. The street view datasets [22,23] are generally captured
by cameras fixed on vehicles. The annotations of street views are ample, usually
from 12 to 30 classes [22,24]. Since it provides detailed elevation information and
lacks roof information, it is essential to fuse it with aerial or satellite datasets in
the 3D reconstruction task.

Drone Dataset. The drone datasets [25,26] are mostly annotated for object
tracking tasks. There are no public pixel-level annotated datasets.

Remote Sensing Dataset. The remote sensing datasets [27,28], like its name
implies, is collected from a far distance, usually by aircraft or satellite. It is so far
away from the earth that, the camera view is almost vertical to the ground. It is
short of elevation information. In addition, the resolution of the remote sensing
image is always unsatisfying.

In a nutshell, constructing a drone dataset with refined semantic annotation
is critical to get semantic point cloud for large-scale outdoor scenes.

3 Semantic Structure from Motion

3.1 Semantic Feature Generation

In 3D reconstruction tasks, SIFT [29] is widely adopted to extract feature points.
For each feature point, there is a 2-dimensional coordinate representation and
a corresponding descriptor. After extracting the feature points and computing
the descriptors, exhaustive feature matching is then performed to get putative
matches. While the SIFT features are robust to the variation of scale, rotation,
and illumination, more robust features are required to produce more accurate
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models. The traditional hand-crafted geometric features are limited in compli-
cated aerial scenes. Intuitively, we can take semantic information into consider-
ation to get more robust feature points.

Semantic Label Extraction. Inspired by [30], which deals with the problem
of drift of monocular visual simultaneous localization and mapping, uses a CNN
to assign each pixel x to a probability vector Px, and the (it)h components of
Px is the probability that x belongs to class i. By taking the result of semantic
segmentation of original images, the process of scene labeling [30] is replaced
to avoid a time-consuming prediction. Since we already get its coordinate in
the raw image, the semantic label can be easily searched in the corresponding
semantic segmentation image. Then each feature point has two main information:
2-dimensional coordinate, and semantic label.

Grouped Feature Matching. Though wrong matches are filtered by geometric
verification, some still exist due to the complication of scenes. It suggests that
epipolar geometry is not strong enough to provide sufficient constraints. We
could apply the semantic label for additional constraints in feature matching.
The candidate matches of Brute-Force matching method may not have the same
semantic label (a feature point indicates road may match to a building, e.g.). As
we annotate the images into three categories, we can simply cluster the feature
points into three semantic groups. Performing matches only in each group could
eliminate the semantic ambiguity.

To reconstruct the semantic point clouds, 2D semantic labels should be trans-
mitted to 3D points. After performing triangulation, the 2D semantic label is
assigned to the triangulated 3D point accordingly.

(a) Auditorium (b) Water (c) Tower (d) Pitch

(e) Road (f) Bungalow (g) Building complex

Fig. 1. Example images from UDD. (a)–(g) are typical scenes in drone images. Best
viewed in color.
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3.2 Equality Constrained Bundle Adjustment

As mentioned in Sect. 3.1, each 3D feature has a semantic label. Then we seek
approaches to optimize the structures and camera poses further.

Review the unconstrained bundle adjustment equation below:

min
1
2

n∑

i=1

m∑

j=1

‖xij − Pi(Xj)‖2 (1)

where n is the number of cameras, m is the number of 3D points, and xij is the
2D feature points, Xj is the 3D points, Pi is the nonlinear transformations of
3D points.

While Eq. (1) minimizes the re-projection error of 3D points, due to the
existence of some bad points, an additional weighting matrix We should be
introduced. As a result, the selection of We affects the accuracy of the final 3D
model, and the re-projected 2D points may be located at some wrong places (For
example, a 3D building point corresponds to a 2D tree point). Intuitively, we
can force the 3D points and the re-projected 2D points satisfy some constraints,
that is Semantic Consistency, which means the 3D points and re-projected 2D
points have the same semantic label.

Different with traditional bundle adjustment, with additional semantic con-
straints, we modify the bundle adjustment as an equality constrained nonlinear
least square problem. Take semantic information from features, we can rewrite
Eq. (1) as follows:

min
1
2

n∑

i=1

m∑

j=1

‖xij − Pi(Xj)‖2, s.t. L(xij) = L(Pi(Xj)) (2)

where L represents the semantic label of observations.
Then we show how to transform Eq. (2) into a Sequential Quadratic Pro-

gramming problem. Let f(x) be a nonlinear least square function that need to
be optimized, c(x) = L(xij) − L(Pi(Xj)) = 0 be the equality constraints, A be
the Jacobian matrix of the constraints, then the Lagrangian function for this
problem is F (x, λ) = f(x) − λT c(x). By the first order KKT condition, we can
get:

∇F (x, λ) =
[∇f(x) − ATλ

−c(x)

]
= 0 (3)

Let W denotes the Hessian of F (x, λ), we can get:
[

W −AT

−A 0

] [
δx
λk

]
=

[−∇f + ATλk

c

]
(4)

By subtracting ATλ from both side of the first equation in Eq. (4), we then
obtain: [

W −AT

−A 0

] [
δx

λk+1

]
=

[−∇f
c

]
(5)
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Equation (5) can be efficiently solved when both W and A are sparse. It is also
easy to prove that W and A are all sparse in unconstrained bundle adjustment
problem by the Levenburg-Marquart method.

Then the original constrained bundle adjustment problem is formulated to
an unconstrained problem, and we seek approaches to solve the linear equation
set Ax = b. Since A is symmetric indefinite, LDLT factorization can be used.
Besides, to avoid the computation of Hessian, we replace W with reduced Hessian
of Lagrangian.

(a) image (b) ground truth (c) prediction

Fig. 2. Visualization of Urban Drone Dataset (UDD) validation set. Blue: Building,
Black: Vegetation, Green: Free space. Best viewed in color. (Color figure online)

4 Experiments

4.1 Dataset Construction

Our dataset, Urban Drone Dataset (UDD)1, is collected by a professional-grade
UAV (DJI-Phantom 4) at altitudes between 60 and 100 m. It is extracted from
10 video sequences taken in 4 different cities in China. The resolution is either
4k (4096 * 2160) or 12M (4000 * 3000). It contains a variety of urban scenes (see
Fig. 1). For most 3d reconstruction tasks, 3 semantic classes are roughly enough
[31]: Vegetation, Building, and Free space [32]. The annotation sampling rate is
between 1% to 2%. The train set consists of 160 frames, and the validation set
consists of 45 images.
1 https://github.com/MarcWong/UDD.

https://github.com/MarcWong/UDD
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(a) H-n15
(b) e33

(c) e44 (d) hall

(e) m1
(f) n1

Fig. 3. Semantic reconstruction results with our constrained bundle adjustment. Red:
Building, Green: Vegetation, Blue: Free space. Best viewed in color. (Color figure
online)
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Table 1. Statistics of reconstruction results of original and semantic SfM. Black:
Original value/unchanged value compared to the original SfM, Green: Better than
the original SfM, Red: Worse than the original SfM.

Dataset Images Poses Points Tracks RMSE Time

Original SfM cangzhou 400 400 1,287,539 2,541,961 0.819215 16 h 49 min 23 s

e33 392 392 559,065 810,390 0.565699 3 h 28 min 43 s

e44 337 337 468,978 641,171 0.546114 3 h 17 min 16 s

hall 195 195 476,853 760,769 0.536045 2 h 10 min 39 s

m1 288 288 422,158 650,072 0.564724 2 h 32 min 10 s

n1 350 350 479,813 622,243 0.471467 4 h 7 min 21 s

n15 248 244 484,229 667,029 0.529639 2 h 40 min 07 s

Semantic SfM cangzhou 400 400 1,326,858 2,660,869 0.719897 14 h 28 min 51 s

e33 392 392 554,449 803,395 0.561667 3 h 21 min 29 s

e44 337 337 469,371 635,279 0.538501 3 h 07 min 13 s

hall 195 195 473,056 745,969 0.531877 2 h 05 min 39 s

m1 288 288 420,044 644,405 0.560242 2 h 30 min 49 s

n1 350 350 481,983 617,487 0.466910 4 h 16 min 02 s

n15 248 248 484,915 647,101 0.520202 2 h 37 min 10 s

4.2 Experiment Pipeline

For each picture, we predict the semantic labels first. Our backbone network
ResNet-101 [33] is pre-trained on ImageNet [34]. We employ the main structure
of deeplab v2 [35] and fine-tune it on UDD. The training is conducted on single
GPU Titan X Pascal, with tensorflow 1.4. The fine-tuning is 10 epochs in total,
with crop size of 513 * 513, and Adam optimizer (momentum 0.99, learning rate
2.5e−4, and weight decay 2e−4). The prediction result is depicted in Fig. 2.

Then, SfM with semantic constraints is performed. For reconstruction experi-
ments that without semantic constraints, we just perform a common incremental
pipeline as described in [6], and referred as original SfM. Our approach refers to
Semantic SfM in this article. All the experiments statistics are given in Table 1,
and the reconstruction results are depicted in Fig. 3.

4.3 Reconstruction Results

Implementation Details. We adopt SIFT [29] to extract feature points and
compute descriptors. After extracting feature points, we predict their semantic
label according to views and locations. For feature matching, we use cascade
hashing [36] which is faster than FLANN [37]. After triangulation, each semantic
label of a 2D feature is assigned to a computed 3D point, and every 3D point
has a semantic label. Constrained bundle adjustment is realized by the algorithm
given in Sect. 3.2. All of our experiments perform on a single computer and an
Intel Core i7 CPU with 12 threads.
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(a) semantic reconstruction result of dataset H-n15

(b) original reconstruction result of dataset H-n15

Fig. 4. Results of dataset H-n15. We can see from the left-up corner of (a) and (b),
our semantic SfM can recover more camera poses than original SfM. Best viewed in
color. (Color figure online)

Efficiency Evaluation. As shown in Table 1, our semantic SfM is slightly faster
than original SfM. It’s quite important, because as the additional constraints
are added, the large-scale SQP problem may not always be solved efficiently in
practice. In datasets of e44 and n1, however, the time spent by original SfM is
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much higher than expected, it may be caused by other usages of CPU resources
when running the program, so we marked it out by red color.

Accuracy Evaluation. For most of the datasets, original SfM and our semantic
SfM can recover the same number of camera poses. But in the n15 dataset, our
method recovers all of the camera poses while the original SfM misses 4 camera
poses. Detailed result is depicted in Fig. 4. As there are more than 200 hundred
cameras, we just circled one part for demonstration. Besides, the number of
3D points reconstructed by our semantic SfM reduced slightly in m1, e33 and
hall datasets, but in cangzhou, e44, n1 and n15 dataset, the number of points
increased. Though the number of tracks decreased in most of our datasets. We
use the Root Mean Square Error (RMSE) of reprojection as the evaluation. The
RMSE of our semantic SfM is less than the original SfM in all of the datasets.
Especially in cangzhou, a much more complicated dataset, the accuracy of RMSE
has improved by almost 0.1, which suggests the accuracy of our semantic SfM
surpasses original SfM, and our semantic SfM has advantages over the original
one in complicated aerial image datasets.

5 Conclusion

As mentioned above, we propose a new approach for large-scale aerial images
reconstruction by adding semantic constraints to Structure from Motion. By
assigning each feature point a corresponded semantic label, matching is acceler-
ated and some wrong matches are avoided. Besides, since each 3D point has a
semantic constraint, nonlinear least square with equality constraints is used to
model the bundle adjustment problem, and our result shows it could achieve the
state-of-the-art precision while remaining the same efficiency.

Future Work. Not only should we consider the semantic segmentation as addi-
tional constraints in reconstruction, but to seek approaches taken the semantic
label as variables to be optimized. What’s more, with the rise of deep learning,
and some representation works on learning feature [38], we would seek approaches
to extract features with semantic information directly. With our approaches pro-
posed in this article, we could further generate a dense reconstruction, which
leads to automatic semantic segmentation training data generation.
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