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W e a r a b l e  C o m p u t i n g

What’s in the eyes for 
Context-awareness?

C ontext-awareness has emerged as 
a key area of research in mobile 
and pervasive computing. In 
addition to location, physical 
activity is one of the most impor-

tant contextual cues.1 In the last decade, a large 
body of research in activity recognition has 
addressed various problem domains and appli-
cations. Ambient sensors such as video cameras, 
reed switches, or sound can recognize physical 
activity in indoor environments. In mobile set-
tings, body-worn sensors can help detect physi-

cal activity. Because body 
movements are directly related 
to a person’s physical activities, 
motion sensing is typically per-
formed using accelerometers 
or gyroscopes.

A rich source of information 
on context that has not been 
used so far is the movements 
of the eyes. The dynamics of 
eye movements as we engage 

in specific activities reveal much about the ac-
tivities themselves (for example, reading). Simi-
larly, specific environments or locations influ-
ence our eye movements (for example, while 
driving a car).

Finally, eye movements are strongly related 
to the cognitive processes of visual perception, 
such as attention, visual memory, or learning. 
In addition to physical activity or location, eye 
movement analysis could help us infer these 
processes in real-world settings. Eventually, 
this might let us extend the current notion of 

context with a cognitive dimension, leading to 
cognition-aware systems that enable novel types 
of user interaction not possible today.

tracking eye movements
If we are to infer context from eye movements, 
we must first track these movements. Several 
well-known tools to track gaze direction ex-
ist, particularly in the field of human–computer 
interaction (HCI). Stationary video-based eye 
trackers are widely available and extensively 
used in various commercial applications. For 
example, in 2006 Toyota presented a driver-
monitoring system that analyzed gaze direction 
to warn car drivers if they were not paying at-
tention to the road. Tobii Technology (www.
tobii.com) sells eye trackers for use in market 
research and usability studies to analyze what 
attracts customers’ attention and to optimize 
product placement or improve website design.

Research in eye-based HCI has tradition-
ally focused on direct manipulation of user in-
terfaces using gaze tracking in stationary set-
tings. For example, gaze has been successfully 
used as computer input2 and for interactive trip 
planning for tourists.3 A growing number of 
researchers investigate gaze direction in mobile 
daily life environments. Tracking eye move-
ments in such settings is a much more difficult 
problem—mainly because the development of 
wearable eye trackers that are robust to physi-
cal activity and allow for long-term recordings 
is still an active field of research4 (also see the 
“Sensing Solutions for Wearable Eye Tracking” 
sidebar).

Eye movements are a rich source of information about a person’s context. 
Analyzing the link between eye movements and cognition might even 
allow us to develop cognition-aware pervasive computing systems that 
assess a person’s cognitive context.
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eye movement analysis
The complementary, but also less 
common, approach to using gaze di-
rection is to analyze the dynamics of 
a person’s visual behavior over time. 

Eye movements can generally be cate-
gorized as conscious, unconscious, or 
a combination of the two.5 Conscious 
eye movements are those we are most 
aware of; we use them to deliberately 

gaze at certain points of interest. Un-
conscious eye movements are gener-
ated by the oculomotor plant, a vi-
sual neural system in the brain. Most 
natural tasks involve an interaction 

T he acquisition of eye movement data in daily life situations 

calls for highly miniaturized, low-power eye trackers with 

real-time processing capabilities. Commercial video-based sys-

tems increasingly address these requirements. Some of these sys-

tems, such as Applied Science laboratories’ Mobile Eye (www.

asleyetracking.com) and SensoMotoric Instruments’ iView X HED 

(www.smivision.com), target mobile users.

Efforts to miniaturize video-based eye trackers led researchers 

to consider alternative measurement techniques. Among these, 

electrooculography (EOG) is probably one of the more well 

known. using electrodes attached to a person’s skin around the 

eyes, EOG measures changes in the electric potential field caused 

by eye movements. By analyzing these changes, the system can 

track eye movements. proposed mobile systems include head-

phones with integrated electrode arrays1 and a head cap with 

EOG electrodes embroidered with silver-coated thread.2

We have demonstrated an EOG-based wearable eye tracker 

implemented as ordinary goggles.3 This self-contained device 

uses dry electrodes integrated into the goggles’ frame and a 

small pocket-worn component with a digital signal processor 

for real-time EOG signal processing. Onboard data storage  

and low-power design allow for more than seven hours of  

mobile data recording and online eye movement analysis  

(see Figure A).
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Sensing Solutions for Wearable eye tracking

Figure A. Wearable electrooculography (EOG)-based eye tracker integrated into ordinary safety goggles. With onboard data 

storage and a low-power design, the tracker can work for more than seven hours, recording mobile data and analyzing eye 

movement online.
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between conscious and unconscious 
eye movements. For example, read-
ing is a conscious visual activity but 
partially involves unconscious eye 
movements trained while acquiring 
reading skills.

Outside pervasive computing, eye 
movement analysis has a long his-
tory as a means of investigating visual 
behavior. For example, researchers 
found that analyzing the sequence of 
gaze points let them identify the most 
salient features in a picture (and thus 
those that attract an observer’s atten-
tion).6 Others showed that it is pos-
sible to support the training of novice 
doctors in assessing tomography im-
ages by modeling the visual behav-
ior of domain experts based on the 
dynamics of their eye movements.7 
These studies are only two examples 
of many that analyzed and modeled 
eye movement characteristics dur-
ing specific tasks. In pervasive com-
puting, however, no one has yet used 
eye movement analysis for context 
recognition.

Context recognition using 
eye movement analysis
We developed a recognition system 
that analyzes and models visual be-
havior and maps eye movements to 
a defined set of context classes. In a 
training phase, we record eye move-
ments while a person experiences a sit-
uation of interest. During operation,  

we then compare eye movements to 
those observed during training to 
determine the most similar context 
class.

Figure 1 shows the architecture of 
our eye-based context recognition sys-
tem. In the first stage, eye movement 
data is acquired using an eye tracker. 
Depending on application require-
ments, we can use different record-
ing techniques, such as eye tracking 
based on video or electrooculography 
(EOG). In the second stage, the sys-
tem preprocesses the data to remove 
any artifacts that might hamper eye 
movement analysis. This preprocess-
ing directly depends on the particu-
lar recording technique. If we are us-
ing EOG signals, we typically employ 
denoising and signal drift removal. 
From the preprocessed eye movement 
data the system can detect different 
eye movement characteristics. These 
might include blinks, fixations, or 
saccades, or additional characteris-
tics that cover specific aspects of eye 
movement dynamics. In practice, us-
ing these eye movement characteristics 
directly is challenging. Therefore, we 
rely on features calculated from these 
characteristics for classification (see 
the “Eye Movement Characteristics 
and Features” sidebar).

We applied this system in two case 
studies addressing different activity 
recognition problems in mobile and 
stationary settings.

Case Study 1:  
reading recognition
In the first case study, we investigated 
the problem of recognizing people read-
ing while in transit in everyday environ-
ments (details are available elsewhere8). 
Reading is a truly pervasive activity. 
People read on computer screens at 
work, they read advertisements and 
signs in public, and they read books at 
home or while traveling. Thus, infor-
mation about individuals’ reading ac-
tivity is a useful indicator of their daily 
situation as well as a gauge of task en-
gagement and attention. For example, 
attentive user interfaces could comprise 
the current level of user interruptability 
or assist people with reading disabili-
ties by automatically magnifying or ex-
plaining words or context in the text.

We defined a scenario of traveling 
to and from work. The experiment in-
volved eight participants occasionally 
reading text during different modes 
of locomotion, including sitting at a 
desk, walking along a street, waiting 
at a tram stop, and riding a tram (see 
Figure 2a). We recorded their eye move-
ments during reading using a wearable 
EOG system. Each participant was fol-
lowed by an assistant who annotated 
both the current mode of locomotion 
and whether the participant was read-
ing. To be able to detect whether the 
participant’s eyes were on the page, 
the assistant had to monitor the par-
ticipant from close proximity. To avoid 

Figure 1. System architecture for eye-based context recognition. The system comprises modules for recording data using video-
based eye tracking or electrooculography (EOG), signal preprocessing (details shown for EOG), as well as the detection of the 
main eye movement characteristics such as saccades, fixations, and blinks. The features extracted from these characteristics are 
finally used for classification.
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T o be able to use eye movement analysis for context rec-

ognition, it is important to understand the different types 

of eye movement. We identified six movement types that are 

potentially useful for context recognition. Currently, however, 

we rely on only three of them: saccades, fixations, and blinks (see 

Figure B for examples). For each movement type, we can extract 

different features that reflect eye movement dynamics (details on 

the signal processing required to extract these features are avail-

able elsewhere1).

Saccades
The eyes move constantly in saccades to build a mental map 

from interesting parts of the visual scene. The main reason for 

this is that only a small central region of the retina, the fovea, can 

perceive with high acuity. We extract a total of 62 saccadic fea-

tures (S), such as the mean, variance, and maximum EOG signal 

amplitudes of saccades, and normalized saccade rates. We cal-

culate all of these features for horizontal and vertical movement, 

for small and large saccades, for saccades in positive or negative 

direction, and for all combinations of these.

We also developed a wordbook-encoding scheme to analyze 

repetitive eye movement patterns. This scheme creates word-

books that hold statistics on the occurrence counts and the type 

of all movement patterns of a particular length that occur in an 

eye movement dataset. For such a wordbook we used five fea-

tures: the wordbook size, the maximum occurrence count, the 

difference between the maximum and minimum occurrence 

counts, and the variance and mean of all occurrence counts.

Fixations
A fixation is the eye’s static state during which gaze is held upon 

a specific location. Humans typically alternate saccadic eye 

movements and fixations. For each fixation, we extract five fixa-

tion features (F): the mean and the variance of the EOG signal 

amplitude within the fixation; the mean and the variance of the 

fixation duration; and the fixation rate in the window.

Blinks
The frontal part of the cornea is coated with a thin liquid film, 

the precornial tear film. Spreading this lacrimal fluid across the 

corneal surface requires regular blinking. Environmental factors 

(for example, relative humidity, temperature, and brightness) 

influence the average blink rate, as do physical activity, cognitive 

workload, and fatigue. We extract three blink features (B): the 

blink rate, and the mean and variance of blink duration.

Microsaccades
Microsaccades are fast involuntary eye movements of small 

amplitude that occur during prolonged fixations. The role of 

microsaccades in visual perception is still a highly debated topic 

among human vision researchers. Typically, microsaccade ampli-

tudes vary over only one to two minutes of arc.2 Although micro-

saccades can be detected with recent video-based eye trackers, 

signal artifacts still prevent their detection using EOG.

Vestibulo-Ocular Reflex
The vestibulo-ocular reflex (VOr) is a very fast eye movement 

triggered to stabilize gaze on a stationary object during head 

movements. The VOr compensates for these movements by 

moving the eye in the opposite direction of the head movement. 

The VOr is difficult to differentiate from saccades using only 

EOG—that is, without any information on head movements.  

So, we did not explicitly use eye movements caused by the VOr.

Smooth Pursuit Movements
Humans voluntarily perform smooth pursuit movements when 

stabilizing their gaze on a moving visual target. psychological 

deficits that have noticeable effects on the velocity of smooth 

pursuit movements include schizophrenia, autism, and posttrau-

matic stress disorder. Because of similar signal characteristics, 

smooth pursuit movements are difficult to separate from EOG 

signal drift.
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eye movement Characteristics and Features

Figure B. Horizontal and vertical electrooculography (EOG) 

signals showing examples of saccades (S), fixations (F), and 

blinks (B). For each movement type, we can extract different 

features that reflect eye movement dynamics.
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distractions, we used Nintendo’s wire-
less controller Wii remote for labeling. 
In total, we recorded an EOG dataset  

of roughly six hours with reading  
occurring about half of the time. This 
required spotting reading in a dataset 

of which approximately 50 percent 
were other types of eye movements (the 
so-called null class).

Reading has a regular pattern char-
acterized by frequent, short scan sac-
cades and less frequent, longer newline 
movements. We therefore chose to an-
alyze the eyes’ left and right saccadic 
movements. We recognized reading 
whenever a sequence of left and right 
saccades occurred in proportions close 
to those measured during training. Us-
ing person-independent training, we 
achieved an accuracy of 80.2 percent 
over all participants. Figure 2b shows 
the resulting precision and recall val-
ues for each of the three modes of 
locomotion.

This study’s main finding was that 
EOG is a feasible measurement tech-
nique for recognizing reading in daily 
life scenarios. The results also showed 
that EOG is robust for different par-
ticipants across a set of typical modes 
of locomotion. EOG’s main advan-
tage was that participants could wear 
relatively lightweight equipment. This 
helped the participants not feel con-
strained and allowed for natural read-
ing behavior. One drawback was that 
we had to apply EOG electrodes to 
participants’ faces, which participants 
might have regarded as inconvenient. 
In a postexperiment questionnaire, 
however, the participants reported 
that they did not feel constrained by 
either the electrodes or the connecting 
wires.

In a more recent work, we show that 
the performance for spotting and rec-
ognizing reading can be even further 
improved by incorporating information 
derived from other modalities, such as a 
person’s head movements while looking 
down at the page.9

Case Study 2:  
recognizing office activities
Our second study investigated the rec-
ognition of a set of typical office ac-
tivities from eye movements recorded 
using EOG.10,11 Eight participants 
took part in the study, which involved 

Figure 2. Measuring reading recognition. (a) Study participants reading during 
different modes of locomotion; (b) precision and recall for recognizing reading  
while sitting, standing, and walking.
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two continuous activity sequences, 
each lasting about 30 minutes. This re-
sulted in a total dataset of about eight 
hours. Each sequence consisted of five 
activities performed in random order: 
copying a text between two screens, 
reading a printed paper, taking hand-
written notes, watching a video, and 
browsing the Web. We also included a 
period of rest that represented the null 
class. For this period, we requested no 
activity from the participants but asked 
them not to engage in any of the previ-
ous activities.

We chose these activities for two rea-
sons. First, they are all commonly per-
formed during a typical working day. 
Second, they exhibit interesting eye 
movement patterns that are both struc-
turally diverse and have varying levels 
of complexity. We believe that by their 
nature—some highly structured (such 
as reading), others less structured (such as 
watching a video)—these activities are 
a representative subset of the broad 
range of activities observable in daily 
life.

We conducted the experiment in a 
well-lit office during regular working 
hours. Participants were seated in front 
of two 17-inch flat screens, each with a 
resolution of 1,280 × 1,024 pixels on 
which a browser, a video player, and 
a word processor and text for copy-
ing were on-screen and ready for use. 
Sheets of paper and a pen were avail-
able on a desk near the participants. 
Participants could freely move their 
heads and upper bodies throughout the 
experiment.

For classification, we used a support 
vector machine (SVM) classifier. We 
developed 90 features based on three 
of the main eye movement types: sac-
cades, fixations, and blinks. In addi-
tion, we devised features that capture 
information on repetitive eye move-
ment patterns (see the “Eye Movement 
Characteristics and Features” sidebar). 
Figure 3a shows an example activity 
sequence, the corresponding horizon-
tal and vertical EOG signals, four ex-
ample eye movement features, and the 

final classifier output. As the figure 
shows, these features reflect character-
istic differences in the eye movements 
performed during some of the activi-
ties. Copying (a combination of reading 
and jumping between screens) can be 
characterized by a high saccade ampli-
tude variance (F22), and a high maxi-
mum horizontal saccade amplitude 
(F56). Reading involves many small 
horizontal saccades (F47) and a low 
mean fixation duration (F66). In con-
trast, watching a video and browsing 
are less well-structured activities and 
can hardly be distinguished only using 
the features shown here.

Using person-independent train-
ing, we achieved an average precision 
of 76.1 percent and recall of 70.5 per-
cent over all classes and participants. 
Reading was a pervasive activity in 
this study as well—from quick checks 
of what had been written or copied, to 
reading longer text on a website or sub-
titles in the video. Consequently, there 
was some confusion between reading 
and browsing, which involves vari-
ous subactivities that include reading 
(see the squares outlined in black in  
Figure 3b).

This study provided useful insights 
for the general problem of activity rec-
ognition using eye movement analysis. 
First, eye movements can serve as an al-
ternative sensing modality for recogniz-
ing human activity without information 
on gaze direction. Second, good recog-
nition performance required to use a 
combination of eye movement features. 
Information on repetitive patterns of 

eye movements proved useful, and can 
probably be extended to capture ad-
ditional statistical properties. Because 
different recognition tasks likely require 
different feature combinations, we rec-
ommend considering a mixture of fea-
ture types for each new task.

extending Context  
with a Cognitive Dimension
The findings from both studies under-
line the significance of eye movement 
analysis for context-awareness. The 
developed feature set and recognition 
system is person-independent and not 
limited to the chosen settings, activi-
ties, or eye tracking equipment. We 
therefore believe that eye movement 
analysis could be successfully applied 
to other context recognition problems 
in different settings, and for a broader 
range of visual and physical activities. 
Eventually, analyzing the link between 
unconscious eye movements and cogni-
tion might even pave the way for a new 
genre of pervasive computing systems 
that can sense and adapt to a person’s 
cognitive context.

Cognitive context includes all aspects 
related to mental information process-
ing, such as engagement, memory, 
knowledge, and learning. We define a 
computing system as cognition-aware 
if it can sense and adapt to a person’s 
cognitive context. 

Consider the following application. 
A business reception is held in a room 
equipped with a cognition-aware ubiqui-
tous memory assistant system. Attendees 
wear eye trackers that let the system ana-
lyze their eye movement patterns while 
they look at other people’s faces. From 
these patterns, the system can assess the 
memory recall processes, and can detect 
whether attendees know and remem-
ber each other. It can then automati-
cally collect contact information about 
new acquaintances or send mnemonics  

about people a particular person has 
met before but does not remember.

This example application goes beyond 
matching faces to a database of previ-
ously encountered persons. It can only 
be implemented by extending the cur-
rent notion of context with a cognitive  

A computing system is cognition-aware if it can 

sense and adapt to a person’s cognitive context.
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dimension. Current context-aware sys-
tems, however, have a hard time assess-
ing the cognitive context unobtrusively. 
The cognitive context is encoded in 
complex neural dynamics, and few ob-
vious cues are accessible by noninvasive 
measurement techniques.

Cognitive Context  
from eye movements
A large body of research in cognitive 
psychology has found that unconscious 
eye movements are strongly linked to 
the underlying cognitive and percep-
tive processes. For example, researchers 
have shown that eye movements corre-
late with the type of memory access re-
quired to perform certain tasks, and are 
good measures of visual engagement12 
and drowsiness.13 Differences in eye 
movement patterns were also found 
for people looking at familiar and un-
familiar faces,14 and for doctors with 
different specialties when assessing to-
mography images. These findings show 
the rich information content available 
in eye movements related to cognition.

As a first step toward the example 
business reception application and our 
vision of cognition-awareness, we con-
ducted an experiment to investigate the 
feasibility of assessing visual memory 
while looking at familiar and unfamil-
iar pictures. The experiment involved 
seven participants (three female and 
four male). The participants looked 
at four continuous sequences of pic-
tures showing four categories of pho-
tographs: abstract images, buildings, 
faces, and landscapes (see Figure 4a). 

Figure 3. Recognizing and classifying 
office activities. (a) Example sequence 
of office activities, electrooculography 
(EOG) signals, example features, and 
classifier output; (b) color-coded 
classifier confusion for eye-based 
recognition of office activities (with an 
example confusion marked with black 
squares). This classification confirms 
specific eye movement characteristics  
in different activities.
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We ensured that pictures in each cat-
egory had similar visual features. For 
example, we selected landscape pho-
tographs showing a lake as their main 
feature, and faces and buildings were 
always centered. Within each sequence, 
we presented 12 pictures only once; we 
chose five others to present four times 
at regular intervals. We randomized 
this sequence across participants. The 
exposure time for each picture was  
10 seconds. Between each exposure, we  
showed a picture with Gaussian noise 
for five seconds as a baseline measure-
ment. The pictures were shown on a 
screen using a beamer resulting in a 
picture dimension of between 1 × 1 
and 1.5 × 1.5 meters. Participants were 
seated 2 meters in front of the screen 
facing its center and were allowed to 
move their upper bodies at any time 
during the experiment. However, we 
encouraged them to sit still.

We recorded the participants’ eye 
movements using EOG. We then ex-
tracted several features, including those 
known from the psychology literature 
to be linked to visual perception and 
memory recall. Figure 4b shows one of 
these features—the fixation count—
for looking at faces with 0, 1, 2, and 
3 prior exposures, averaged over all 
participants. As the figure shows, the 
mean fixation count decreased signifi-
cantly with the number of previous ex-
posures (significance level p < 0.05). 
This finding is akin to that of Jennifer 
Heisz and David Shore, who reported 
a similar correlation using a stationary 
video-based eye tracker.14 The standard 
deviation across participants was larger 
in our study than in that work. We  
believe this is because of the limited  
dataset and might be improved by using 
more participants and longer sequences 
of pictures.

Nevertheless, the study revealed 
two important findings regarding 
the link between eye movements and  
(visual) memory recall processes. First, 
it is feasible to capture eye movement 
characteristics that reflect these pro-
cesses using on-body sensors such as 

Figure 4. Visual memory experiment. (a) Example sequences with alternating pictures 
from four categories and Gaussian noise. (b) Mean fixation counts for faces with 0, 1, 
2, and 3 previous exposures. The error bars represent the standard error of the mean 
across all seven participants. The asterisks indicate a significance level of p < 0.05.
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EOG—that is, data acquisition and 
analysis is not limited to stationary 
video-based eye tracking systems. This 
finding is important in that it supports 
the use of wearable sensors for record-
ing eye movements in mobile settings. 
Second, depending on the particular 
visual stimulus, only one eye move-
ment feature—in this case the mean 
fixation count—might be enough to 
assess a person’s memory recall. As a 
next step, we will analyze combinations 
of several eye movement features, and 
use our recognition system to automati-
cally detect and quantify such memory 
recall processes.

A lthough these initial results 
are promising, developing 
cognition-aware systems 
for real-world applications 

faces several challenges.
First, assessing the cognitive context 

requires employing an appropriate ex-
perimental methodology. This meth-
odology will be more similar to that 
used in experimental psychology than 

to that used in pervasive computing. In 
particular, specific cognitive processes 
must first be evoked reliably and mea-
sured in controlled settings before they 
can eventually be inferred in complex 
daily life situations.

Second, eye movement characteristics 
reflecting different cognitive processes 
must be identified, extracted from eye 
movement data, and automatically ana-
lyzed. This will likely require domain-
specific modeling and machine learning 
approaches. In the simplest case, this 
means combining and adapting exist-
ing recognition methods for this new 
problem domain, as we showed. How-
ever, research on cognition-awareness 
will also require and drive the develop-
ment of new methods geared toward 
cognitive context evaluation. This will 
probably require mechanisms that 
adapt to a person’s specific eye move-
ment characteristics.

Third, new questions in terms of en-
gineering pervasive cognition-aware 
environments must be addressed. For 
example, interaction with artifacts 
that adapt to a person’s cognitive  

context will open up new areas of re-
search, particularly in HCI and design.

Finally, even if we only use eye move-
ments to recognize activity, because we 
know that eye movements are influ-
enced by cognitive processes, we must 
consider ethical and privacy issues. We 
must weigh the benefits of a cognition-
aware system, such as the memory as-
sistant outlined earlier, against the po-
tential downsides. These issues are not 
unlike those raised by human activity 
recognition in pervasive computing en-
vironments. The wearable computing 
answer to these concerns might be to 
keep this information “on body” at first 
for a particular person.

Other challenges are associated with 
the co-influence of activity, situation, 
and cognitive processes on a person’s 
eye movements. In the case studies pre-
sented here, either the activity or the 
cognitive process was predominant. 
Thus, we could consider each aspect 
separately. In real-world applications, 
however, eye movements are subject to 
a joint influence of activity, situation, 
and cognitive context. It is important 
to identify and separate these sources 
of influence for robust eye-based con-
text recognition. We believe future re-
search will therefore require a multidis-
ciplinary approach at the crossroads of 
cognitive sciences, psychology, machine 
learning, and engineering.

Eventually, eye movement analysis, 
along with other measurement tech-
niques such as portable electroenceph-
alography (EEG) or functional near-
infrared spectroscopy (fNIRs), might 
let us develop cognition-aware perva-
sive computing systems—a new genre 
of systems that can sense and adapt to 
a person’s cognitive context.
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