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Abstract—With an ever-increasing number of mobile devices competing for attention,

quantifyingwhen, howoften, or for how long users look at their devices has emerged as a

key challenge inmobile human-computer interaction. Encouragedby recent advances in

automatic eye contact detection usingmachine learning anddevice-integrated cameras,

weprovide a fundamental investigation into the feasibility of quantifying overt visual

attention during everydaymobile interactions. In this article,wediscuss themain

challenges and sources of error associatedwith sensing visual attention onmobile devices

in thewild, including the impact of face and eye visibility, the importanceof robust head

poses estimation, and the need for accurate gaze estimation. Our analysis informs future

researchon this emerging topic andunderlines the potential of eye contact detection for

exciting newapplications toward next-generation pervasive attentive user interfaces.

& IN RECENT YEARS, the number of digital inter-

faces competing for users’ attention has rapidly

increased. Consequently, actively managing

users’ limited and valuable attentional resou-

rces has emerged as a fundamental research

challenge in human-computer interaction (HCI).

With mobile devices being pervasively used, this

challenge is particularly pressing in mobile HCI

where attentive behavior has become highly

fragmented.1,2 Despite its significance, little

research has focused on managing attention

during mobile interactions. This is, for one,

because of a lack of a single commonly accepted

definition and understanding of attention.3 One
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widely accepted characterization distinguishes

between covert and overt attention: Covert

attention refers to the cognitive process of shift-

ing one’s mental focus of attention. Its measure-

ment requires special-purpose hardware as well

as carefully constrained settings and stimuli.4 In

contrast, shifts of overt attention are practically

more useful for HCI purposes because they

involve eye movements that can be measured

using cameras. It is for this reason that only

overt attention has been widely studied, e.g., in

the context of attentive user interfaces (AUIs).5

In AUIs, a key question is when, how often, or for

how long users visually attend (look) at their

device.

A second reason for the lack of research is

that measuring mobile attentive behavior is pro-

foundly challenging. Previous works had to rely

on special-purpose eye tracking equipment that

constrained users’ mobility2 or cumbersome

and time-consuming manual annotation,1 both

preventing the study of overt visual attention

during everyday mobile interactions and at

scale. A promising approach to address this

challenge is to instead use computer vision

methods and the high-resolution front-facing

cameras readily integrated into mobile devi-

ces.6–9 Following this approach, recent work has

for the first time demonstrated robust and accu-

rate automatic eye contact detection.10 In con-

trast to gaze estimation where the goal is to

predict a precise three-dimensional (3-D) gaze

direction or 2-D location on a screen, eye contact

detection is the binary task of detecting if a user

looks at a target or not. As such, as far as AUIs

are concerned, eye contact is currently the most

important measure of overt visual attention but

its full potential is only now starting to be

explored.

In this article, we study the feasibility of

quantifying visual attention during everyday

interactions with mobile devices using auto-

matic eye contact detection. We first evaluate

the impact of face and eye visibility on eye con-

tact detection performance, given that the best

performing methods require the face and facial

landmarks but users’ face was shown to be visi-

ble only around 30% of the time.11 We then study

the impact of head pose on eye contact detec-

tion performance, which is particularly

challenging in mobile settings in which devices

are held and being looked at in a variety of ways,

including while on the go. Finally, we demon-

strate the need for more accurate gaze estima-

tion and its importance to the eye contact

detection task. For each of these challenges, to

guide future research in this emerging area, we

propose interesting research directions and

show how eye contact detection can form the

basis for higher level attention metrics that will

enable a range of exciting new applications

toward pervasive AUIs.12

ATTENTION ANALYSIS
Approaches to sense overt visual attention

generally fall into two groups: Methods that

require special-purpose hardware and software-

only methods that only require off-the-shelf

cameras.

One example from the first group are Eye-

Pliances by Shell et al.13 – custom camera-

equipped devices to detect eye contact using

computer vision. A similar idea was proposed

for human-to-human eye contact detection in

the form of glasses14 that were equipped with

infrared cameras and LEDs. Recently, commer-

cial mobile eye trackers have become smaller

and more accessible, which makes them

attractive for everyday attention analysis.15

Steil et al. used such an eye tracker together

with phone-integrated sensors to forecast

user attention during mobile interactions.2

While these advances bring us closer to the

vision of pervasive AUIs, the requirement for

special-purpose equipment hinders large-scale

deployment.

In contrast, software-based methods leverage

the ever-increasing computational capabilities of

latest mobiles devices. These methods therefore

do not require any custom hardware and they

enable studying attention in situ, i.e., during

users’ everyday interactions. Integrated cameras

have particularly improved in recent years in

terms of resolution and quality and now enable

visual computing methods for attention analysis

unthinkable before. As a result, estimating

human gaze from images has attracted signifi-

cant research interest (see Hansen and Ji for a

comprehensive review).16 EyeTab was an early
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model-based approach to estimate users’ gaze

direction during interactions with a tablet

device.17 Their system required only the front-

facing RGB camera and achieved an angular

error of around 6�. A more promising approach

which can learn parameters from large-scale

datasets are learning-based gaze estimators.

They outperform traditional methods in terms of

performance and brings us closer to uncon-

strained gaze estimation without requiring user

or environment-specific calibration, i.e., enabling

person-independent gaze estimation. One such

approach is the full-face appearance-based gaze

estimator proposed by Zhang et al.8 that uses a

convolutional neural network (CNN) trained on

the MPIIGaze dataset.6 A similar approach pro-

posed specifically for mobile devices is

iTracker.7 While such appearance-based gaze

estimation methods have improved significantly

and can achieve gaze estimation errors of

around 4�–6�, these methods are still less accu-

rate than dedicated eye trackers.

Hence, another line of work investigated eye

contact detection as a computationally simpler

variation of the gaze estimation task, yet chal-

lenging in unconstrained settings due to the dif-

ferent camera geometries and target object

configurations. One such example is GazeLock-

ing, a fully supervised approach for appearance-

based eye contact detection,18 however, it

requires manual and tedious data annotation,

which is impractical in the wild. To address this

limitation, Zhang et al.10 proposed an alternative

method for eye contact detection that, besides

achieving state-of-the-art performance, is unsu-

pervised, i.e., does not require manual annota-

tion. The single assumption of their approach is

that the camera is next to the object of interest—

which is also true for common mobile devices.

Therefore, we opted to use this method to under-

stand the key challenges and sources of error

associated with unconstrained eye contact

detection inmobile settings.

EVERYDAY EYE CONTACT
DETECTION

The method by Zhang et al.10 first detects the

user’s face with a face detector. Afterwards, a

landmark detector finds six landmarks inside the

face bounding box. Given these six 2-D facial

landmarks, the image is normalized19 and a

state-of-the-art gaze estimation CNN8 is used to

predict the 2-D gaze location. These 2-D gaze

locations are sampled for clustering under the

assumption that each cluster corresponds to

one eye contact target. Since the camera is

always placed next to the object of interest, the

correct data cluster is the one closest to the

camera, i.e., closest to the origin of the coordi-

nate system.

After clustering, samples belonging to the tar-

get cluster will be labeled as positive, while all

the others will be labeled as negative. These

images can now be used to train a binary sup-

port vector machine (SVM) as the eye contact

classifier. The SVM input is a 4096-dimensional

feature vector extracted from the last fully con-

nected layer of the gaze estimation CNN. Cluster-

ing is only necessary once, for training. For

inference, input images are still preprocessed

and fed into the same gaze estimation CNN

model. The trained SVM classifier then takes the

feature vector as input and outputs the pre-

dicted eye contact label.

KEY CHALLENGES IN QUANTIFYING
MOBILE VISUAL ATTENTION

The purpose of our work is to provide a fun-

damental analysis of using the approach by

Zhang et al. for quantifying visual attention dur-

ing everyday mobile interactions. To this end, in

our implementation of their method, we used

the dlib� CNN face detector and the dlib 68 land-

mark detector. The full-face-appearance-based

gaze estimator, which is part of the eye contact

detection method, was trained on the MPIIFace-

Gaze dataset.8

The evaluations which follow, were con-

ducted on the following two challenging and

publicly available datasets.

� Understanding Face and Eye Visibility Dataset

(UFEV).11 For our evaluation, we randomly

sampled 5791 out of 25 726 images collected

by 10 participants during everyday in-the-

wild mobile interactions. The dataset was

collected to analyze the visibility of the dif-

ferent facial landmarks, such as eyes or

�http://dlib.net
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mouth, when users naturally interact with

their mobile device. Two annotators manu-

ally annotated 4844 images with positive eye

contact labels and the remaining 947 as nega-

tive no eye contact.

� Mobile Face Video Dataset (MFV).20 It aims to

provide a better understanding of the chal-

lenges associated with mobile face-based

authentication. This dataset is relevant

because it contains 750 face videos from

50 users in different illumination conditions

captured using the front-facing camera of an

iPhone 5s. We randomly sampled 4363 images

from the “enrollment” task where users had

to turn their heads in four different directions

(up, down, left, and right). This enabled us to

create a more balanced evaluation dataset

(as opposed to the UFEV dataset). Out of the

4363 images, 58% of the images were labeled

as having eye contact and the remaining as no

eye contact.

Before investigating the different factors that

influence the accuracy and robustness of the

method, we first evaluated the overall perfor-

mance in terms of the Matthews Correlation

Coefficient (MCC), which is commonly used to

assess binary classifiers. It is more informative

than accuracy or the F1 score because it consid-

ers the balance ratios of the four classes of the

confusion matrix (true positives, true negatives,

false positives, and false negatives) in the final

score. The MCC score ranges from �1.0, which

indicates total contradiction between the predic-

tions and the observations, to 1.0, which corre-

sponds to a perfect classifier. A value of 0 is

equivalent to random guessing.

Overall, on the UFEV dataset, the method

achieves an MCC of 0.349 (SD=0.17) in a leave-one-

person-out cross validation, i.e., the eye contact

detectorwas trainedwithin dataset on nine partici-

pants and evaluated on the remaining one. In com-

parison, Zhang et al. reported an MCC of around

0.45 in stationary desktop settings.10 In this evalua-

tion, themanually annotated labels were only used

for testing. For training, the eye contact detector

automatically labels the image samples through

unsupervised clustering. In an ablation study, we

further evaluated the performance of the method

by replacing the automatically labeled training

samples with the manually annotated ones. We

directly used these images to train the SVM eye

contact detector and evaluated the resultingmodel

in a leave-one-person-out cross validation. This is

the Human baseline and, in this case, the method’s

MCC score increases to 0.499 (SD=0.17).

Within-dataset evaluations only highlight one

aspect of performance.Withmachine learning sys-

tems, it is also interesting to assess them across

datasets, which is a good indicator of real-world

performance. In this experiment, we trained the

eye contact detector ononedataset and evaluated

its performance on the other. Training onMFV and

evaluating on UFEV, the MCC score is 0.124. Using

the manually annotated labels, the MCC score

increases to 0.403. Training on UFEV and testing

onMFV, theMCC score is 0.484.With ground truth

labels, theMCC score is 0.431.

To better understand the failure cases, we

then identified and studied three core challenges:

Partially visible faces, the impact of different

head pose angles, and gaze estimation perfor-

mance as a basis for eye contact detection.

Challenge 1: Face and Eye (In)visibility

One highly relevant challenge for studies con-

ducted using the front-facing camera of mobile

devices is the face and eye visibility of the partici-

pants.11 Nowadays, most face detection, land-

mark detection, and even many gaze estimation

approaches require the full face to be visible.

However, according to Khamis et al.,11 the full

face is only visible around 30% of the time. Zhang

et al.’s10 method also requires the full face as

input given that one of the steps in their pipeline

is a full-face-appearance-based gaze estimator. In

this section, we evaluate the impact of partially

visible faces on themethod’s performance.

Our evaluation is conducted on the UFEV

dataset, which provides annotations for several

different visibility categories depending on

whether the entire face or only parts of the face

are visible. The categories, the number of images

in which a face can be detected, and the total

number of images are: Whole face all landmarks

(2020/2292), Whole face some landmarks (329/

442), Partial face 2 eyes 1 mouth (866/1203), Par-

tial face 2 eyes no mouth (534/790), Partial face 1

eye 1 mouth (129/373), Partial face 1 eye no mouth

(63/659), Partial face no eyes 1 mouth (1/8), and
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no face (5/24). On average, 45.25% (SD=29.12%) of

the images are skipped and hence could not be

used in the evaluation because no face has been

detected.

Figure 1 shows the result of a within dataset

leave-one-person-out per category cross valida-

tion. For each person, we trained an eye contact

detector (unsupervised, no labels required) on

the data from the remaining nine people and

evaluated the performance per visibility cate-

gory. The rightmost two categories, Partial face

no eyes 1 mouth and No face, have an MCC score

of 0 simply because no images could be used in

the evaluation, either because no faces were

detected or because all the images only

belonged to a single class. Thus, it is not possi-

ble to train and evaluate a classifier. For the

remaining categories, we compared the method

proposed by Zhang et al.10 to the same method

when using the manually annotated labels, the

Human baseline. The results, also from a leave-

one-person-out cross validation, are as follows.

When the full face is visible, the MCC is 0.457

(SD=0.22). In the Human baseline, the MCC is

0.613 (SD=0.24), which shows the potential for

improving the unsupervised clustering approach

for automatic labeling of the data. For the other

categories, the MCC score degrades when fewer

landmarks are visible. If two eyes are visible, the

average MCC stays above 0.3, however, once

only one eye or less is visible, the method simply

becomes unusable.

To understand real-world performance, we

conducted a cross-dataset evaluation (see

Figure 2 for a performance overview of the

method). The eye contact detector was trained

once on the MFV dataset and evaluated once on

the entire UFEV dataset, per visibility category.

In this case, it becomes even clearer that the

method performs poorly and could be signifi-

cantly improved when comparing its perfor-

mance with the human baseline.

Challenge 2: Robust Head Pose Estimation

Head pose estimation is a computer vision

task where the goal is to determine how the

head is tilted relative to the camera. It is

expressed in terms of six degrees of freedom,

three for translation and three for rotation in

3-D. For the appearance-based gaze estimation

task, head pose estimation is often used as input

to train a CNN or for data normalization.19 In

mobile settings (see Figure 3—Head pose distri-

bution), for both datasets, we have noticed a

large variability in both the horizontal and the

vertical pose angles. Because of this, we investi-

gated the influence of such angles on the eye

contact detection performance. In other words,

is the performance of eye contact detection

worse when the head is tilted and not frontal?

Does this happen often in mobile scenarios?

Figure 3 shows the results of this experiment.

The first column represents the distribution of

the head pose angles in the normalized camera

Figure 1. Performance of the two methods, the eye contact detector by Zhang et al. and the Human baseline

which uses the manually annotated images to train the eye contact detector. The bars represent the MCC and

the error bars represent the standard deviation. The results are from a within dataset evaluation on the UFEV

dataset (leave-one-person-out per visibility category cross validation).
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space19 estimated from the two datasets. For the

experiments, we divided the data in five horizon-

tal and five vertical buckets. A pitch and yaw

value between �10� and 10� represents little

rotation of the head. Between 10� and 20� is a

mild turn of the head. We consider anything

over 20� as a significant head rotation. As shown

in the head pose distribution, in mobile settings,

it is often the case that the head and face are not

directly facing the camera.

Figure 2. Performance of the two methods, the eye contact detector by Zhang et al. and the Human baseline

which uses manually annotated class labels. The bars represent the MCC coefficient. The results are from a

cross-dataset evaluation where the eye contact detector was trained on the entire MFV dataset and tested

once on the UFEV dataset for all participants, per category.

Figure 3. Classification performance of the eye contact detector by head pose angles. The left most column

shows the distribution of the pitch and yaw in the normalized camera space. The MCC values represent the

performance of the two baselines, per bucket, from a leave-one-person-out cross validation. The Human

baseline uses manual ground truth annotations rather than clustering to obtain the labels for the training

samples.
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The reported values represent the MCC coef-

ficient from a within dataset leave-one-person-

out per bucket cross validation. The first row

highlights the result on the UFEV dataset, while

the second one shows the results on the MFV

dataset. On the UFEV dataset, for pitch and yaw

values between �10� and 10�, the MCC score is

0.4 for Zhang et al. and 0.5 when using ground

truth labels. Because of the distribution of the

data, a similar MCC value is achieved when the

pitch is between 10� and 20�. As the angles

become more extreme, the methods become

unusable. On the MFV dataset, the performance

is even worse. For frontal faces, the MCC value

for Zhang et al. is 0.2.

Challenge 3: Accurate Gaze Estimation

Recent advances in appearance-based gaze

estimation bring us closer to the vision of sys-

tems that are able to accurately track human

gaze from a single image.6,7,9,10 Despite these

advancements, most gaze estimators are still far

from practical use due to lower accuracies and

the eye contact detection method proposed by

Zhang et al. builds on such an appearance-based

gaze estimator trained on MPIIFaceGaze.8 Conse-

quently, improvements to the gaze estimation

task will also benefit eye contact detection. Esti-

mating the gaze direction in everyday settings

has to cope with several challenges. Varying

illumination conditions, variability across users,

different screen and camera geometries, face

and facial landmarks occlusions are only a few of

the challenges which have to be addressed for

accurate and robust gaze estimation. Figure 4

shows a few sample images from the UFEV data-

set together with the gaze estimates and the pre-

dicted eye contact label. For some images,

Figure 4 columns 1–4, if the gaze estimates are

reasonably accurate, the method is able to over-

come small estimation errors and correctly pre-

dict (no) eye contact. However, gaze estimates

can also be highly inaccurate if, for example, the

face and facial landmarks have been incorrectly

detected (column 8). Another possible source of

error is due to the head pose angles (column 6).

Most current gaze estimation datasets only con-

tain limited variability in head pose angles, but

as seen in Figure 3, mobile settings can exhibit a

wide range of head orientations. Without addi-

tional training data, the predicted gaze estimates

in such cases will be inaccurate as well.

DISCUSSION
In our evaluations, we identified three key

challenges for sensing attention in highly

dynamic, mobile interactive settings.

Our first experiment quantified the impact of

face and eye visibility on the eye contact

Figure 4. Sample images with the corresponding gaze estimates and the predicted eye contact label (green

represents eye contact, red no eye contact). While being computationally simpler, the state-of-the-art method

proposed by Zhang et al. for eye contact detection builds on an appearance-based gaze estimator. Thus, the

performance of the method is dependent on the performance of the underlying gaze estimates. E.g., for

certain head poses (column 6), if the gaze estimates are incorrect, the eye contact label will also be incorrect.

Attention – Yours vs. Theirs
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classification performance and showed that cur-

rent methods performed best when the full face

or all the facial landmarks were visible. As soon

as the eyes or parts of them, which convey most

of the relevant information for attention, were

not visible, the performance of the method

decreased significantly. Such analyses were pos-

sible due to recent datasets such as UFEV,11

however, a limitation of this dataset is the rela-

tively few number of images available in some

visibility categories. As such, large-scale data-

sets with fine-grained annotations will further

help to better understand the failure cases.

Another reason for the reported performance on

partially visible faces are methods which require

the users’ full face, including the one by Zhang

et al.10 Moreover, just as the findings from Kha-

mis et al.11 highlight, in mobile settings the entire

face is often not visible. Methods which only use

an image of the eye already exist,9 however, they

rely on face and landmark detectors which usu-

ally require the full face to be visible. Therefore,

future work should investigate methods which

can robustly find eyes in an image without hav-

ing to detect the entire face.

Our second experiment on the error distribu-

tion of the eye contact detector relative to the

distribution of the head pose angles yielded sev-

eral interesting findings. For one, current meth-

ods perform best when the head is oriented

toward the camera. As soon as the head is

turned in any direction, the performance of the

method becomes worse. However, we can

observe that if there is sufficient training data

available for such cases, e.g., Figure 3—on the

UFEV dataset when the pitch is larger than 10�,
the method can still perform well. Based on this,

as future research directions, we believe that at

least two things are important. First, the head

pose angles we used are estimates (there is no

ground truth available), so it is possible that

some of these are incorrect or inaccurate. Future

research could investigate head pose estimation

in mobile settings and asses accuracy and

robustness specifically. Second, there is a need

for new datasets that cover a variety of not only

head pose angles but gaze angles as well.

Our last experiment qualitatively addressed

the need for accurate gaze estimation. As previ-

ously mentioned, eye contact detection methods,

while computationally simpler, sill require reason-

able gaze estimates to produce usable results. As

such, any improvement in current gaze estimation

methods will also benefit attention sensing on

mobile devices. More concretely, we encourage

future work to investigate gaze estimation meth-

ods and datasets which have been collected

specifically in such mobile interactive scenarios

(e.g., the large-scale GazeCapture dataset).7

Our analysis, so far, shows that there is still a

large gap that has to be filled before attention

can be sensed accurately and robustly in mobile

settings. Once some of these challenges have

been addressed, we envision several application

domains that can benefit from knowing when,

how often, or for how long users attend to their

devices. On the one hand, eye contact detection

can be used as a means to sense and quantify

attentive behavior during everyday mobile inter-

actions. Just as in the work by Steil et al.,2 eye

contact could be used as a basis for higher level

attention metrics. Such metrics could count the

number of times users attend to their device, for

how long, or if they have shifted their attention

toward the environment. These, together with

other device-integrated sensors, would enable

modeling user behavior in a way which is cur-

rently not possible without special-purpose eye

trackers. These user models could also be used

for other tasks in mobile HCI, such as predicting

user interruptibility, assessing user engagement,

or boredom. On the other hand, real-time eye

contact detection could be used for attentive

and interactive user interfaces. For instance, if

users do not look at their device, the screen

could be turned OFF to save power. Some mobile

device manufacturers already offer a similar

functionality, however, this is so far only based

on head pose information and, as such, error-

prone. Another possible application is in the

area of quantified self. Both Apple and Android

smartphones quantify the amount of time users

spend on their devices. Such statistics are

naively based on the amount of time the screen

is on, however, with eye contact detection,

much finer insights could be provided. For

example, attentive behavior and the way users

interact while using social media could be

completely different than while browsing the

Internet or while texting.
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CONCLUSION
In this article, we investigated the feasibility

of quantifying visual attention during everyday

mobile interactions. To this end, for the first

time, we studied a state-of-the-art method for

automatic eye contact detection in challenging

mobile interactive scenarios. We identified three

core challenges associated with sensing atten-

tion in the wild and provided future research

directions for each of them: Face and eye (in)vis-

ibility, robust head pose estimation, and the

need for accurate gaze estimation. Last but not

least, we discussed how eye contact (detection)

and visual attention quantification on mobile

devices will enable exciting new applications. As

such, our work informs the development of

future pervasive AUIs and provides concrete

guidance for researchers and practitioners work-

ing in this emerging research area alike.
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