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ABSTRACT 
We present the first real-world dataset and quantitative eval-
uation of visual attention of mobile device users in-situ, i.e. 
while using their devices during everyday routine. Understand-
ing user attention is a core research challenge in mobile HCI 
but previous approaches relied on usage logs or self-reports 
that are only proxies and consequently do neither reflect at-
tention completely nor accurately. Our evaluations are based 
on Everyday Mobile Visual Attention (EMVA) – a new 32-
participant dataset containing around 472 hours of video snip-
pets recorded over more than two weeks in real life using the 
front-facing camera as well as associated usage logs, interac-
tion events, and sensor data. Using an eye contact detection 
method, we are first to quantify the highly dynamic nature of 
everyday visual attention across users, mobile applications, 
and usage contexts. We discuss key insights from our analyses 
that highlight the potential and inform the design of future 
mobile attentive user interfaces. 
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INTRODUCTION 
With mobile devices having become pervasively used in ev-
eryday life and creating constant interaction demands, users’ 
visual attention has become highly fragmented [31, 40]. Quan-
tifying the allocation of so-called overt visual attention (involv-
ing eye movements) during mobile interactions – for example 
when, how often, or for how long users look at their device – 
has consequently emerged as an important challenge in mobile 
human-computer interaction (HCI) and a crucial step towards 
attentive user interfaces that actively manage users’ limited 
attentional resources [3]. 
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Figure 1: We propose EMVA, a novel 32-participant 
dataset with around 472 hours of video snippets as well 
as associated sensor data, usage logs, interaction events, 
and location data, collected in-situ. Leveraging a recent 
method for automatic eye contact detection, we present 
the first quantitative analysis of users’ visual attention al-
location during everyday mobile device interactions. 

Previous research on this important topic has so far focused on 
alleviating negative effects of fragmented visual attention, e.g. 
by identifying opportune moments to interrupt the user [49] 
or by predicting distractiveness of mobile notifications [34, 9, 
26]. While these tasks deal with users’ visual attention indi-
rectly, research on quantifying attention directly is scarce [46]. 
The main reason for this is the lack of accurate and robust 
methods to study attentive behaviour during everyday mo-
bile interactions without special-purpose and obtrusive eye 
tracking equipment [40]. As a consequence, prior work has 
instead relied on cumbersome and time-consuming manual 
annotation [31], analysis of application usage logs [17], or 
self-reported questionnaires collected through methods like 
experience sampling [44]. However, all of these approaches 
are only proxies to attention and, as such, temporally too 
coarse or can even negatively impact the naturalness of users’ 
attentive behaviour [46]. Recent advances in learning-based 
gaze estimation [52] and automatic eye contact detection [51, 
1] point the way towards sensing and analysing user visual
attention in-situ, i.e. while users use their mobile devices
during everyday routine [3, 45]. But the potential of these
methods for unobtrusive measurement of fine-grained and ac-
curate attentive behaviour in mobile HCI has not yet been
realised.
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To fill this gap, and inform the design of future mobile at-
tentive user interfaces, we conducted a two-week in-the-wild 
data collection of video snippets using the front-facing cam-
era of 32 mobile phone users. Our Everyday Mobile Visual 
Attention (EMVA) dataset contains 14,322 videos, totalling 
around 472 hours, as well as associated meta-data, sensor 
data, and device usage logs (see Figure 1). Additionally, us-
ing crowd-sourcing functionality integrated into the app, we 
collected 10,759 annotations for eye contact with the device 
that were manually annotated by at least two different app 
users. In contrast to existing datasets that only contain im-
ages and associated sensor and meta data collected at discrete 
points in time [19], our dataset is the first to capture the tem-
poral dynamics of attention allocation during mobile device 
use. To democratize further research in this important area of 
research, we have made the dataset publicly available here1: 
http://www.emva-dataset.org/ 

Analysing such a large dataset manually is challenging. To 
gain insights into attentive behaviour during mobile interac-
tions, we therefore used automatic eye contact detection as a 
tool to quantify overt visual attention. Detecting when users 
look at their devices provides rich insights into attentive be-
haviour and is the basis for key attention metrics, such as 
the duration of sustained visual attention or the number of 
attention shifts [40]. As such, we first evaluated two cur-
rent state-of-the-art approaches for eye contact detection [51, 
1]. Using the best performing method [1], we then analysed 
several key attention metrics across users, applications, and 
contexts. Our results show, for example, that the average dura-
tion of sustained visual attention per video snippet is around 
7 s. Additionally, attentive behaviour is both user and context-
dependent and changes over the course of the day. 

The specific contributions of our work are: First, we provide 
the first multimodal dataset that captures the temporal dynam-
ics of attention allocation during mobile device interactions 
embedded in everyday routine. Second, leveraging a recent 
method for automatic eye contact detection in mobile settings, 
for the first time, we analyse and quantify visual attention 
in-situ without the need for obtrusive eye trackers or tedious 
and error-prone manual annotations; we gather insights and 
provide detailed analyses of users’ attentive behaviour. Third, 
we discuss key insights from our analyses that highlight the 
potential and inform the design of future mobile attentive user 
interfaces. 

RELATED WORK 
Our work relates to previous work on 1) user behaviour mod-
elling on mobile devices and 2) mobile gaze estimation and 
attention sensing. 

Modelling User Behaviour on Mobile Devices 
Modern mobile devices are powerful and sensor-rich minia-
turised computers capable of sensing the users’ environment 
and behaviour, including attention. Given the fragmented na-
ture of mobile interactions, which can last as little as four 
1In the public release of the dataset, we masked images that contained 
bystanders given that we did not have approvals to publish their 
personal data. 

seconds [31], a significant body of prior work has focused 
on predicting user interruptibility from device integrated sen-
sors [4, 11, 30, 33]. A complementary task is concerned with 
attentiveness and receptivity towards messages and notifica-
tions [9, 34]. Smartphones and, more recently, smartwatches 
can be used to estimate boredom [35] or different levels of 
user engagement [43, 25, 6]. Such behavioural models can be 
used to adapt the possible interaction modalities based on the 
users’ context [36, 29]. The Attention Meter is a software tool 
which calculates a score based on different behavioural traits 
taking into account head movements or facial expressions [23]. 
Mobile eye trackers can also be used to better understand mo-
bile device interactions [32] and reveal, for example, boredom 
in outdoor settings [20]. A combination of device-integrated 
sensors and body-worn cameras can predict shifts of attention 
before they happen [40]. A promising approach to avoid the 
need for special-purpose eye tracking equipment are methods 
based on saliency [2, 12] that aim to predict regions of in-
terest that draw attention in images or videos. Scene driven 
saliency models [15] can monitor a person’s attention on a 
display through saliency maps as probability distributions for 
the gaze locations [41]. However, methods based on saliency 
are not suitable for mobile device interactions, i.e. not (yet) a 
viable replacement for eye tracking. Besides device-integrated 
sensors and cameras, another current standard for modelling 
user behaviour is through self-reports and experience sam-
pling [44]. Experience sampling together with questionnaires 
and smartphone logs can be used to understand user attentive-
ness to mobile notifications [26] or while consuming video 
content [5]. However, a significant challenge with such meth-
ods is finding the right moment to question the user without 
influencing the current level of attention [18]. 

In contrast, we are the first to study the dynamics of visual 
attention allocation in-situ from video recordings collected 
during everyday mobile device interactions. More specifically, 
our data collection did not require any bulky eye tracking 
equipment but only off-the-shelf smartphones with unobtru-
sive, integrated front-facing cameras. Another important dis-
tinction from prior work is that our data collection did not 
constrain the participants in any way, neither through the need 
for self-reports nor experience sampling approaches. Both as-
pects contribute significantly to the naturalness of the recorded 
user behaviour and the ecological validity of our findings. 

Visual Attention Sensing 
Estimating where people look is a long-standing research chal-
lenge in HCI [3]. Early works required special-purpose or 
custom hardware, such as EyePliances that respond to visual 
attention on everday objects, such as a lamp [38]. The same 
concept has been extended to detect when people looked at 
one another [7] or to facilitate media playback when people 
looked at their devices [8]. The AttentivU glasses used elec-
troencephalography as well as electrooculography sensors to 
measure a person’s attentiveness in real-time and provided 
feedback when their attention was low to increase user engage-
ment [21]. While such approaches work well in constrained 
settings, the need for special-purpose equipment fundamen-
tally limits possible use-cases. 

http://www.emva-dataset.org/
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Figure 2: Our custom Android application recorded video snippets using the front-facing camera readily integrated 
into modern smartphones every time a user unlocked their device. After installing the app, participants were asked to 
complete a short questionnaire on demographics (a) and to define private locations in which their GPS location was not 
logged (b). From the main menu (c), participants could start/stop the data collection service, review existing videos, play 
the annotation game, view the scoreboard, or change app settings. The video review menu (d) allowed them to select 
which data they wanted to share. Videos were played back at twice the speed to make reviewing easier (e). 

At the same time, mobile devices are equipped with ever more 
high-resolution cameras and powerful computational capa-
bilities and have consequently increasingly been used as a 
platform for mobile attention sensing. For example, EyePhone 
was one of the first systems to introduce an attentive UI that 
tracked the user’s eye and could detect blinks [27]. The Vi-
sual Attention Detection with a Smartphone (VADS) system 
detected where users were looking in a scene by leveraging 
both cameras of a smartphone; the front-facing was used to 
estimate the user’s gaze direction while the rear one observed 
the scene [16]. SwitchBack was a system which only tracked 
the relative movement of the eye and, with prior knowledge 
of the task, detected distractions and further assisted users to 
continue where they left off [24]. EyeTab was an early model-
based approach for gaze estimation on unmodified tablet com-
puters [47]. ScreenGlint was also a model-based approach 
which exploited the reflection of the screen and, with calibra-
tion, achieved an angular error of around three degrees [14]. 

A study on the applicability of computer vision based gaze 
estimation methods highlighted that, in general, such methods 
have a low mean accuracy and a high error rate [13]. More 
promising are recent learning-based gaze estimation methods 
because they can learn robust gaze estimators from large-scale 
datasets [52]. A work by Sugano et al. proposed to aggregate 
gaze estimates obtained using such a method across multiple 
users, allowing them to still calculate joint attention distribu-
tions on a public display [42]. Advances in learning-based 
gaze estimation have also spurred activity on the related yet 
still different eye contact detection task. Eye contact detec-
tion is promising given that it is computationally simpler than 
gaze estimation but fully sufficient to analyse user attention in 
mobile settings. Both fully-supervised [39] as well as unsuper-
vised methods [51, 28] for ambient and egocentric body-worn 
cameras were proposed, as well as recently a method for eye 
contact detection in challenging mobile device interaction 

scenarios [1]. We leverage these methodological advances 
in learning-based gaze estimation and eye contact detection 
for the first time to extract key metrics and quantify mobile 
attentive behaviour in everyday life. 

APPROACH AND IMPLEMENTATION 
In order to collect a large-scale in-situ dataset which can be 
used to quantify attentive behaviour during everyday mobile 
device interactions, we developed an Android application (see 
Figure 2) with three main components: (1) An Android data 
logging application to record video snippets using the front-
facing camera together with metadata, sensor data, usage logs, 
and location data, (2) The video review component that al-
lowed participants to review and filter out data they did not 
want to share, and (3) the annotation game that enabled partic-
ipants to annotate data collected by others. In the following, 
we describe each of these components in detail. 

Data Logging Application 
The Android application for data logging consists of two back-
ground services: (1) A data capture service which starts the 
video recorder and logs the associated metadata, sensor data, 
and usage logs and (2) a notification listener service which 
logged mobile notifications. 

Videos were recorded every time users unlocked their device. 
To prevent extremely large video files which are then hard 
to upload, the data collection service automatically stopped 
and restarted video recording after 15 mins. No videos were 
recorded when the device was in standby or when users 
checked the time or their notifications. Once installed, the 
app asked users for the necessary permissions. Participants 
had the possibility to manually start or stop the data record-
ing service from the application menu (see Figure 2c). This 
ensured privacy when they did not want to be recorded. The 
data collection application did not restrict users in any way 



Figure 3: Sample images from our EMVA dataset showing the significant variability in terms of place and time of record-
ing, face and eye appearance, as well as illumination conditions. The dataset contains 14,322 videos, totalling around 472 
hours, of 32 users interacting with their mobile devices. It also contains associated meta-data, sensor data, and device 
usage logs as well as 10,759 eye contact labels, each manually annotated by at least two app users. 

except restrictions imposed by the Android operating system: 
If another foreground app (e.g., while taking photos) was using 
the camera, the background service cannot record videos at 
the same time. 

The Android application logged the following data: 

• Video data. Each video was recorded at 720x1280 pixels 
or, if not supported, the largest available resolution with a 
maximum width of 720 pixels. The frame rate was set to 30 
and the video bitrate was set to 5 Mbit/s. 

• Sensor data. Depending on hardware capabilities, we also 
logged readings from the device-integrated accelerometer, 
gyroscope, magnetometer, proximity sensor, light sensor, 
ambient temperature, and step counter. 

• Location data. If users enabled GPS on their device, the 
application logged the latitude, longitude, and the accuracy 
of the last GPS measurement while the phone was unlocked. 
When uploaded to the server, the data is anonymised by con-
verting coordinates to place types using the Google Nearby 
Places Search Request API. The server stores the results of 
the query including the distance to the users’ position. 

• Device usage logs. Among the most important ones are 
the application running in the foreground, touch events, 
the charging state, screen orientation, ringer mode, display 
brightness, or connectivity state (Mobile Connectivity or 
Wi-Fi). For security, the Android OS only allows logging 
when touch events happen and not where on the screen. 

• Activity. The current activity of the user as predicted by the 
activity recognition API from Google. Some of the possible 
classes were “STILL”, “IN VEHICLE”, “RUNNING”, or 
“ON FOOT” and include a confidence value. 

• Notifications. The notification listener service keeps track 
of any notifications that appear or are removed from the 
status bar. We logged notification metadata and the source 
application but none of the actual content. 

• Bluetooth data. To better understand the users’ context 
or whether users are in densely populated places, we also 
logged nearby Bluetooth devices. At the beginning of each 
video snippet, the app scans for nearby devices and logs 
the received signal strength indicator and the MAC address. 
To ensure privacy of other devices, each MAC address is 
appended with a secret pepper and then hashed with the 
SHA-256 cryptographic function. 

In the analyses which follow, we investigated visual attention 
across users, applications, and different usage contexts. Not 
all the sources of data were used in this work, however, we 
will publicly release the full dataset upon acceptance. 

Video Review Component 
None of the data was uploaded without the users’ explicit 
consent. Before uploading, users had to open the study appli-
cation and go to the video review menu (see Figure 2d). This 
menu allowed users to review all videos collected so far and to 
decide which ones to upload or delete permanently. For faster 
reviewing, videos were played back at 2x the normal speed. 
To further help participants with video reviewing, the study 
application also prompted users through a notification at 10 
pm in the evening that new videos were available for review. 
For additional safety and privacy, our application also had a 
history menu which showed all the videos which had already 
been reviewed and uploaded. If participants considered they 
had made a mistake, they could retroactively request the dele-
tion of files from the server. This measure was in accordance 
with the university’s ethics policy. 
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Figure 4: The study application had built-in crowd-
sourced functionality which enabled participants to 
quickly indicate where the face was located (a) or anno-
tate whether the person was looking at the device or not 
(b). This feature was implemented as a game and partici-
pants could see how many images they had already anno-
tated and how they ranked in comparison to others (c). 

After a video had been reviewed, all files and logs were up-
loaded to a secured university FTP server, to which only the 
main researchers had access. Data was uploaded in the back-
ground, without any involvement from the users, and only over 
Wi-Fi to avoid consuming large amounts of the participants’ 
mobile data. In contrast to collecting a dataset consisting 
mainly of photos [19], our app also had to handle large video 
files (over 500 MB for 15 mins) and short-term internet con-
nectivity. Before uploading a file, videos were therefore split 
in 1 MB chunks. Through a 128-bit MD5 hash-checksum 
appended to each chunk, the server validated them for correct-
ness and, after receiving all the chunks, merged all of them 
back and reassembled the whole video file. 

Annotation Game 
To annotate the recorded data, in our application, we further 
implemented an annotation game that allowed participants 
to quickly and effortlessly annotate images with eye contact 
labels in a crowd-sourcing fashion (see Figure 4). Each partic-
ipant was assigned, for privacy, a random username. The im-
ages each participant had to annotate were randomly sampled 
from all the other participants from the dataset – participants 
did not annotate their own images. Participants had to perform 
two annotation tasks: (1) Locate the face inside the image (see 
Figure 4a) and (2) decide whether the person was looking at 
the phone or not (see Figure 4b). To annotate the presence of 
a face, an app user had to touch the respective face location in 
the image. An orange circle would start to grow slowly from 
that position and, when touched again, the circle would stop 
from growing, recording the face location and approximate 
size as a result. Afterwards, similar to a popular dating app, 
if the person in the image was looking at the mobile device 
the participant was asked to swipe the image to the right. If 
the person in the image was not looking at the mobile device, 
the participant was instructed to swipe to the left. If unsure or 
no face was visible, the participant had to swipe towards the 
top of the screen. Participants earned one point for labelling 

one image and two points if they also indicated where the face 
was located. Based on the score, participants earned badges 
which encouraged them to annotate more images and reach 
the next level. The annotation game included a scoreboard 
where participants could see how many images they annotated 
and how they ranked in comparison to others (see Figure 4c). 

DATA COLLECTION 
We deployed the data collection application on the Google Play 
Store. Any user with a valid Google account could download, 
install the app, and participate in our data collection. This 
way, participants could use their own smartphones, therefore 
producing more ecologically valid behavioural data. 

Participants 
We first obtained ethics approval for both the application and 
the data collection as a whole from the ethics committee of 
ETH Zürich. We then advertised our data collection through 
university mailing lists, social networks, or advertising web-
sites. In total, the application was downloaded and installed 
on 54 unique devices. Out of these 54, 32 participants (20 
male, 12 female) went through the study set-up phase and 
agreed to participate. Based on the demographics survey, the 
ages ranged form 18 to 59 (M = 26.78, SD = 8.39). Three 
participants identified themselves as left-handed, while the rest 
were right-handed. Their professions included mostly bache-
lor, master, and PhD students, but we also had two accounting 
professionals, a service technician, musicians, a photographer, 
retirees, a scientist, and an entrepreneur. Self-reported ethnic-
ity of the participants was 19 x White, 6 x Asian, 3 x Latino, 
2 x Black or African American, 1 x Hispanic, 1 x Indian. 18 
participants used the private location feature and set between 
one and five (M = 1.55, SD = 1.02) privacy-sensitive areas. 
They used a wide variety of Android devices from manufac-
turers such as Samsung, Xiaomi, Motorola, Huawei, HTC, 
Nokia, or LG, with different versions of the operating system 
(from Android version 6.0 to 9). 10 participants said they wore 
glasses and all of them stated using their own private device 
for the study. 

Those who participated for at least two weeks in our study 
were compensated. The requirements for compensation were 
as follows: In 12 out of the 14 days, participants had to share at 
least 10 videos per day and a total duration of at least 15 mins 
for CHF 50 or 30 mins for CHF 100. Participants also had two 
days where they did not have to meet the minimum upload 
criteria. Out of 32, 25 participants were compensated and all 
of them received the maximum amount. Moreover, 10 random 
participants were additionally compensated with CHF 30 if 
they participated in the annotation game and have annotated 
at least 300 images. 

Procedure 
After opening the application for the first time, a welcome 
screen explained participants the goals of the study. After-
wards, participants were asked to carefully read the informa-
tion and give their informed consent by manually selecting a 
checkbox as approved by the Ethics Committee of the univer-
sity. Then, users were asked to fill-in a short demographics 
questionnaire (see Figure 2a). The questionnaire included 
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Figure 5: Key characteristics of the EMVA dataset. The number of videos and the total duration in hours per participant 
sorted by duration in decreasing order (left). The dashed lines represent mean values. A histogram of the video (and, 
hence, interaction) duration (right). While the average video duration is 2 minutes, many videos (around 24%) are less 
than 10 s long. This shows the highly fragmented nature of mobile interactions and user attention. 

questions on age, gender, profession, ethnicity, dominant hand, 
whether they wore eye glasses or contact lenses, and whether 
they considered themselves technologically adept. Given that 
the application also logged location information (latitude and 
longitude), the interface then prompted participants to set any 
number of private locations (e.g., home or work) (see Fig-
ure 2b). If users were within 100 m of each such location, no 
location data was logged by the application. In the final step, 
users were shown a video tutorial that explained most of the 
functionalities of the study app. Before data collection started, 
users had to grant the app all required permissions. This step 
was also shown and explained in the video tutorial, so that all 
participants could successfully start the study. 

The EMVA Visual Attention Dataset 
The resulting dataset contains video snippets from 32 partic-
ipants collected over more than two weeks in-situ. As such, 
there are a total of 14,322 videos, with each participant con-
tributing between 31 and 1535 videos (M = 447.56, SD = 
370.21). The total duration of the videos is around 472 hours. 
The minimum per participant is 0.35 hours, while the max-
imum is 47.67 hours (M = 14.76 hours, SD = 12.63 hours). 
Figure 5 shows the number of videos and the corresponding 
duration per participant. 26 participants used the video review 
feature to delete 1,326 videos with a total duration of over 50 
hours. On average, each participant deleted 51 video snippets 
(SD = 81.83). 

Through the annotation game, 15,740 images were annotated 
by at least two study participants with eye contact labels (i.e. 
whether participants were looking at their device or not). An-
notators agreed on 13,234 labels: 7,871 eye contact, 1,746 non 
eye contact, and 3,617 skipped/unsure. For the 2,506 frames 
with an annotation conflict, an experimental assistant assigned 
a third label, where possible (684 for eye contact, 458 for no 
eye contact). This resulted in 8,555 images (7,871 + 684) 
labelled as eye contact and 2,204 (1,746 + 458) labelled as 
no eye contact, a total of 10,759. On average, there are 501 
annotated frames per participant (SD=442.94). 

Besides eye contact labels, our EMVA dataset also provides 
face location annotations, i.e. the location and approximate 
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Figure 6: The distribution of face location and size de-
pends on the orientation of the device. 

size (bounding box) of the face in the image, for 11,442 images 
from the total 15,740. 9,368 images were annotated by two or 
more people and 2,074 by just one study participant. 

The 15,740 images collected through the annotation game 
were also captured in different device orientations: 15,257 in 
portrait mode (camera at the top) and 349 in landscape mode, 
either with the camera to the left or to the right. Figure 6 shows 
a distribution of the face annotations for the whole dataset. It 
can be seen that the location and size of the face in the image 
depends on the device orientation. In landscape mode, faces 
tend to appear larger due to being closer to the device. 

AUTOMATIC EYE CONTACT DETECTION 
In this work we use a state-of-the-art method for eye con-
tact detection as a basis for calculating higher-level visual 
attention metrics. Eye contact detection in mobile HCI is the 
computational task of predicting whether a user is looking 
at their device or not. In contrast, gaze estimation tries to 
accurately predict the 3D gaze direction or the 2D point of 
regard. However, current gaze estimation methods are still 



rather inaccurate and angular gaze estimation error can be as 
high as 6◦ [22, 52, 47]. 

Zhang et al. were the first to propose a method to leverage 
such inaccurate estimates and still achieve state-of-the-art per-
formance for eye contact detection [51]. The only assumption 
was that the camera needed to be next to the object of in-
terest – an assumption that is also valid for mobile devices 
where the front-facing camera is typically placed above the 
display. Zhang et al. proposed a method for unsupervised 
clustering of the on-screen 2D gaze locations to automatically 
label images with eye contact annotations. Using these la-
bels and the output of a CNN, the authors showed how to 
train an SVM to detect eye contact in both stationary settings 
and during person-to-person interactions. We refer interested 
readers to the original paper [51] for further technical details. 
Recently, Bâce et al. significantly improved that initial method 
by addressing challenges specific to mobile interaction scenar-
ios [1]. To understand whether these methods could be used 
to sense attention in-the-wild, we first evaluated both on our 
new dataset using the crowd-sourced eye contact annotations 
collected with the app. In a second step, we then used the 
better performing method to analyse mobile overt attention. 

Performance Evaluation 
To establish the state-of-the-art performance for eye contact 
detection on our new dataset, we reimplemented both methods 
as described in the original papers. For training we used 
three different datasets: EMVA, UFEV [19], and MFV [10]. 
The UFEV dataset consists of over 25,000 images from 10 
participants collected during mobile device interactions in-the-
wild. The MFV dataset, while collected in controlled settings 
and with a single device type, offers increased variability in 
illumination conditions across 50 smartphone users. For the 
evaluation, we randomly sampled around 5,000 images from 
both the MFV and the UFEV dataset, which has been shown to 
be sufficient to train reliable models [1]. For training purposes, 
the images do not have to be labelled since both methods are 
fully unsupervised. Labels are only necessary for evaluating 
the accuracy of each approach. 

We measured performance in terms of the Matthews Corre-
lation Coefficient (MCC), which is a well-established metric 
to evaluate binary (two-class) classification tasks. We first 
conducted a cross-dataset evaluation: We trained both eye 
contact detectors on MFV, UEFV, and both (MFV+UFEV) 
and then evaluated on the 10,759 crowd-sourced annotations 
(8,555 eye contact and 2,240 no eye contact) from our dataset. 
Afterwards, we conducted a within-dataset evaluation on the 
annotations by doing a leave-one-person-out cross-validation, 
i.e. train on the data from 31 participants and evaluate on the 
remaining one. Finally, we also trained an eye contact detector 
on all three datasets. 

Figure 7 shows the result of these evaluations. The method by 
Bâce et al. [1] significantly outperforms the method by Zhang 
et al. [51] on our challenging dataset independent of the type 
and amount of training data. The highest MCC score was 
achieved, as expected, when training and testing on the same 
dataset (MCC = 0.66). Nevertheless, we also noticed that 
when training on a combination of MFV, UFEV, and on the 
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Figure 7: Eye contact classification performance as eval-
uated on 10,759 eye contact annotations from the EMVA 
dataset. The bars represent the MCC values and the error 
bars represent the standard deviation from a leave-one-
person-out cross validation. 

EMVA dataset, the MCC score is similar (0.64). A one-way 
ANOVA showed that the difference between the four condi-
tions is significant at the p < 0.05 level (F(4,150) = 3.69, 
p < 0.01). A post-hoc Tukey HSD test further showed that 
the difference is significant only between the two best per-
forming ones and the worst performing condition, i.e. training 
within dataset or on all three datasets vs. training only on 
MFV. The difference between the first and second best per-
forming method is not statistically significant (Tukey HSD 
p = 0.4484). 

QUANTIFYING VISUAL ATTENTION 
Given these findings, we opted to use the method by Bâce et 
al. [1] for all further analyses. Machine learning models typi-
cally benefit from large amounts of training data and can, as 
such, better abstract away user and data-specific biases. Since 
the difference between training within dataset and training on 
all three datasets was not statistically significant, we decided 
to train the eye contact detector on all the data we had, i.e. 
MFV, UFEV, and EMVA. We ran the prediction on our entire 
dataset to label each frame with one of three possible labels: 
Eye contact, no eye contact, or undefined. The undefined class 
was used when no face was detected in the image, hence it was 
not possible to infer whether a user was present, or if the face 
detector had failed. Upon manual inspection of eye contact 
predictions, we found that predictions were often inaccurate 
for four of the 32 participants. To increase reliability of the at-
tention analyses, we decided to exclude these four participants 
in the following evaluations. These participants will still be 
included in the public dataset. 

Visual Attention Across Participants 
On our evaluation dataset consisting of data from 28 partic-
ipants, on average, 50.74% of the frames were predicted as 
eye contact, 10.73% as non eye contact, and 38.53% as unde-
fined. Figure 8 shows the per-participant distribution of these 
labels. The average duration of sustained attention per video, 
i.e. continuous eye contact interval, was 7.23 s (SD=18.88 s). 
The average duration for non eye contact also per video was 
1.87 s (SD=4.9 s) and the average duration of an undefined 
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Figure 8: The distribution of eye contact, no eye contact, 
and undefined – no face detected – labels sorted in decreas-
ing order of eye contact percentage. The percentage of no 
eye contact varies significantly across participants with a 
minimum of 3.59%, a maximum of 38.99%, and an aver-
age of around 10%. 

segment was 6.81 s (SD=36.13 s). Besides average values, we 
also analysed the duration of the first eye contact segment, i.e. 
when users unlocked their device and started to interact. In 
this case, the average duration of the first attention span was 
11.28 s (SD=30.87 s). When looking at the longest visual at-
tention span per participant and per video snippet, the average 
value was 22.56 s (SD=44.8 s). 

Taking into account the distribution of the eye contact and no 
eye contact labels, we extracted the users’ primary attentional 
focus proposed by Steil et al. [40]. If the majority of labels in a 
single video were labelled as eye contact, excluding undefined 
sections, the primary attentional focus was defined to be on 
the device. If most of the labels were non eye contact, the 
focus was on the environment. Looking at all the videos 
and aggregating per participant, in 61.41% (SD=20.09%) of 
the cases, the primary attentional focus was on the mobile 
device. In 5.86% (SD=6.16%) of the videos, the users’ primary 
attention was towards the environment. For the remaining 
32.73% (SD=18.6%), the main focus was undefined, i.e. in 
these videos, the face detector has failed to detect a face in 
more than 50% of the image frames. 

Another key characteristic of attentive behaviour are atten-
tion shifts [40]. We analysed four types of attention shifts: 
From the device to the environment, from the environment to 
the device, and from the device/environment to an undefined 
section or the other way around. To avoid attention shifts 
caused by blinking, which the eye contact detector predicts as 
no eye contact, we empirically defined a threshold of 250 ms 
between attention shifts since the average duration of a human 
blink is between 0.1 and 0.4 s [37]. On average, per video 
snippet, there are 4.63 (SD=9.99) shifts of attention from the 
device to the environment and 4.4 (SD=9.81) from the envi-
ronment to the device. When looking at attention shifts and 
undefined segments (e.g., eye contact followed by undefined), 
7.9 (SD=15.91) were from or towards the environment, 6.45 
(SD=14.2) from or towards the device. 

Figure 9: The average duration of sustained visual atten-
tion across participants per hour of the day. The bars 
represent the duration and the error bars represent the 
standard deviation. While similar throughout the day, the 
duration of sustained attention tend to be larger in the 
morning than in the evening and significantly decreases 
during the night. 

We further analysed diurnal attentive patterns (see Figure 9). 
The duration of sustained visual attention in the morning (be-
tween 7 and 12 am) varied between 8 and 12 s (average around 
9 s). In the evening (after 6 pm), these durations tended to 
get shorter, varying between 6 and 7 s (average around 6.3 s). 
After midnight (from 0 am to 7 am), this duration decreased 
further to an average of 5.4 s. We also analysed visual at-
tentive behaviour per day of the week, i.e. Monday through 
Sunday, averaged per participant. We did not find significant 
differences between days, with an average sustained attention 
duration per video snippet of 7.23 s (SD=0.44 s). 

Visual Attention Across Applications 
During the data collection period, the study participants used 
a total of 420 different applications – identified based on the 
application package name. In this experiment, we clustered 
the individual applications by category (as listed in the Google 
Play Store) and analysed the average duration of sustained 
visual attention, i.e. the average attention span, and the num-
ber of attention shifts per application category and per video 
snippet (see Figure 10). 

Our results highlight that visual attentive behaviour strongly 
depends on the type of application used. For example, in the 
Medical category, the average duration of attention span was 
13.21 s (SD=18.26 ). Similarly, in the Education category, the 
duration was 12.45 s (SD=30.34 s). In contrast, in an applica-
tion showing the weather, the attention span was much shorter 
– 4.33 s (SD=7.45 s). Not only is the duration of attention 
spans different but also the number of attention shifts differed 
across categories. For instance, in the Beauty category, from 
our dataset, we extracted 19.5 (SD=24.74) shifts of attention 
towards the environment. Looking at the Education category 
where the attention span was higher than average, there were 
also fewer attention shifts (6.17, SD=7.99). While for certain 
categories it is difficult to draw generalizable conclusions due 
to the amount of data available (e.g., the Dating category), our 



results show that attentive behaviour can vary when different 
application types are used. 

Visual Attention Across Usage Contexts 
To gain further insights into attentive behaviour across differ-
ent usage contexts, we first analysed visual attention relative 
to the activity (see Figure 11). The data collection application 
also logged the current activity of the user as recognised by the 
activity recognition API from Google. The possible classes 
are Still, In vehicle, On bicycle, On foot, Running, Walking, or 
Tilting. On foot represents a user who was walking or running, 
In vehicle users who were in a car or on public transport, and 
Tilting was recognised when the angle relative to gravity had 
changed significantly. The recognition API also provides a 
confidence value that represents the probability of the most 
likely class. In our analysis, we only considered results where 
this value was larger than 50%. All results that follow are 
per video and per participant. As expected, the duration of 
sustained visual attention was the longest when users were 
still (M=7.71 s, SD=19.92 s). When users were walking or run-
ning, the duration of attention span was significantly shorter, 
between 2.4 and 3.1 s. The shortest attention span was when 
the recognised activity was Tilting (M=0.52 s, SD=1.76 s). 

Besides the users’ activity, we also analysed attention allo-
cation depending on their location, either Private – as set 
through the private locations feature of the study app – or Pub-
lic which was everything else. We did not notice significant 
differences between private or public locations in terms of 
sustained visual attention. 6.49 s (SD=16.73 ) on average for 
a private place and 7.35 s (SD=19.55 s) for a public place. In 
terms of attention shifts towards the environment, the results 
are also similar: 8.15 (SD=13.21) in private places and 6.74 
(SD=11.18) in public spaces. 

DISCUSSION 
Understanding when, how often, or for how long people use 
their mobile devices is a fundamental problem in HCI with 
significant implications for tasks such as predicting interrupt-
ibility or estimating attentiveness to messages and notifications. 
Often, insights into users’ attention was only a by-product of 
these tasks, mainly because of a lack of methods to sense and 
quantify it in unconstrained in-the-wild settings, i.e. during 
natural everyday mobile device use. In this work, we used off-
the-shelf smartphones to collect the EMVA dataset containing 
around 472 hours of video snippets as well as metadata, sensor 
data, and usage logs from 32 participants. Using a method for 
automatic eye contact detection [1], we provided, for the first 
time, quantifiable visual attention metrics extracted from this 
dataset. Our results, distilled into the following key insights, 
inform the design of future mobile attentive user interfaces in 
several ways. 

Eye contact detection as a tool for analysing overt visual 
attention in situ. As demonstrated in our work (see Figure 7), 
detecting when users have eye contact with their device is 
feasible using latest methods even on challenging video data 
recorded in-situ, as available in our dataset. We also showed 
that eye contact detection provides rich insights into attentive 
behaviour and is the basis for key attention metrics, such as the 

duration of sustained visual attention on the device or the num-
ber of attention shifts to and from users’ environment. This 
method has two major advantages over previous approaches: 
1) It does not require any special-purpose hardware, only an 
off-the-shelf smartphone with integrated front-facing camera, 
and 2) it does not constrain users in any way. Hence, eye 
contact detection enables, for the first time, the analysis of 
data collected in-situ and building of mobile user attention 
models. In the future, such models could, for example, be 
used to adapt interaction modalities based on users’ attentive 
state [29, 36]. 

Visual attention in mobile HCI is highly fragmented. Our 
analyses of attention showed that the average duration of sus-
tained visual attention was only around 7 s. This finding sup-
ports previous works highlighting the highly fragmented na-
ture of mobile interactions [31]. Moreover, our analysis also 
investigated attention shifts which are also a key characteris-
tic of attentive behaviour. We found that, on average, users 
redirect their attention from the device to the environment 
around four times per interaction. When they do shift their 
overt attention, these diversions typically last for around 2 s. 
These findings underline the need to develop a new generation 
of attentive user interfaces that actively manage and protect 
such a valuable resource as human attention. This could be 
implemented, for example, by helping users through explicit 
feedback or stimuli, or by unconsciously increasing their level 
of engagement [21], to not direct their attention away from the 
device. 

Visual attention is user and context-specific. While 
analysing the entire dataset in the form of aggregate statistics 
provides valuable insights into visual attention during mobile 
phone interactions, we observed that even more interesting 
insights can be gained when analysing the characteristic atten-
tive behaviour patterns of individual users (see Figure 8). We 
found that visual attention is not only highly user-specific but 
also highly dynamic over the course of a single day (see Fig-
ure 9). Moreover, attentive patterns vary based on the mobile 
application used (see Figure 10) as well as based on the users’ 
current activity and usage context (see Figure 11). Taken to-
gether, these results provide strong evidence that proxy meth-
ods, such as Apple’s ScreenTime – which assumes attention 
when the screen is on, are inaccurate and indeed do not capture 
the fragmented and individual characteristics of attention. The 
same holds true for commonly used application usage logs as 
a proxy to user attention that, as our results show, only provide 
a very limited view on users’ attention. 

Face detection is an open challenge. Current eye contact 
detection methods, including the one we used, requires the 
face to be detected initially. Face detection is an open research 
challenge in computer vision [50] and, sure enough, as can 
be seen from Figure 8, the percentage of images in which the 
face cannot be detected – the undefined category – not only 
varies per participant but can be as high as 74.4%. This can 
happen either because the user is really not present nor visible 
or when only parts of the face are visible – often the case when 
using the front-facing camera of a mobile device [19]. The 
eye contact detection method we used incorporates a state-of-
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the-art face detector that managed to detect the face in 61.5% 
of images in our dataset (around 235 hours of video data) in 
comparison to only around 30% reported by Khamis et al. on 
their dataset [19]. The remaining 38.5% show that there is 
also an urgent need for better face detectors or for multimodal 
attention analysis systems that extend eye contact detection 
with additional information, e.g. obtained from user interac-
tions [48]. Improvements in face and eye contact detection 
can be expected to also significantly increase robustness and 
accuracy of future analyses of mobile attention. 

Limitations and Future Work 
While our work is the first to present quantifiable visual at-
tention metrics during mobile interactions in-situ, it also has 
several limitations that we plan to address in future work. 

First, any analysis is only as good as the underlying eye con-
tact detection method. Any improvements to this approach 
will therefore also increase the quality of the calculated statis-
tics. In our evaluations we had to exclude four out of the 
32 participants because the eye contact predictions were too 
inaccurate, too often. To better understand the failure cases, 
it will be crucial to extend the EMVA dataset with additional 
fine-grained eye contact annotations. Future work could then 
investigate how the method performs, for example, when blink-
ing. Currently, images in which participants were blinking 
were predicted as no eye contact. To increase the reliability of 

the reported statistics and to avoid counting additional atten-
tion shifts caused by blinking, we currently used a buffer of 
250 ms (an average duration of a blink [37]) between consec-
utive attention shifts. As such, we also hope that our dataset 
can serve as a challenging benchmark for future eye contact 
detection methods in mobile interactive scenarios. 

Another limitation concerns the data collection process. As 
required by the university’s ethics committee, the applica-
tion allowed participants to pause and resume data collection 
whenever they wanted. As a result, we observed two different 
behaviours: (1) Participants who kept data recording on most 
of the time and then chose which videos to delete post-hoc 
(up to 362 video snippets deleted per person) or (2) those who 
collected data only in situations which they explicitly wanted 
to share. This means that for the latter category, it is possible 
that participants were more aware of the fact that they were 
being recorded during their interactions and, hence, changed 
their behaviour. 

CONCLUSION 
In this work we proposed EMVA, a new 32-participant dataset 
of around 14,000 videos, totalling around 472 hours recorded 
over more than two weeks during mobile device interactions 
in-situ. We leveraged a state-of-the-art eye contact detection 
method and, for the first time, extracted quantifiable visual 
attention metrics characterising the highly fragmented nature 
of mobile interactions in-the-wild. We found that the average 
duration of sustained visual attention per video snippet was 
around 7 s and that attention allocation is both user and context-
specific and changes over the course of the day. Taken together, 
these results are significant in that they provide the first ever 
insights into attentive behaviour dynamics by directly looking 
at the user through the front-facing camera of mobile devices. 
By publicly releasing the full dataset including annotations, 
we hope to encourage further work in this important yet still 
only emerging area of research. 
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