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Abstract. We present MSTMIXER – a novel video dialog model oper-
ating over a generic multi-modal state tracking scheme. Current models
that claim to perform multi-modal state tracking fall short in two ma-
jor aspects: (1) They either track only one modality (mostly the visual
input) or (2) they target synthetic datasets that do not reflect the com-
plexity of real-world in-the-wild scenarios. Our model addresses these
two limitations in an attempt to close this crucial research gap. Specif-
ically, MSTMIXER first tracks the most important constituents of each
input modality. Then, it predicts the missing underlying structure of the
selected constituents of each modality by learning local latent graphs us-
ing a novel multi-modal graph structure learning method. Subsequently,
the learned local graphs and features are parsed together to form a global
graph operating on the mix of all modalities, further refining its struc-
ture and node embeddings. Finally, the fine-grained graph node features
are used to enhance the hidden states of the backbone Vision-Language
Model (VLM). MSTMIXER achieves new state-of-the-art results on five
challenging benchmarks.
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Fig. 1: MSTMIXER achieves SOTA results on various video-language tasks.
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1 Introduction

Multi-modal tasks at the intersection of computer vision and natural language
processing have been introduced to develop intelligent agents capable of assisting
humans in understanding a visual premise through language. Among these tasks,
video dialog is considered to be one of the most challenging. In contrast to
visual [8] and video [68] question answering, which only require reasoning about
a single question, video dialog models have to reason over the entire dialog
history in addition to the current question. Furthermore, in contrast to visual
dialog [15], video dialog involves reasoning over a video instead of a static image.
Thus, a crucial part of a video dialog model is Dialog State Tracking (DST),
which was originally introduced to track and update users’ goals in the form of
dialog states [42,64]. Nowadays, it is broadly used when a model keeps track of
what it believes to be relevant for answering the question at hand.

Until now, research on DST has been predominately uni-modal in the form
of slot-filling tasks [39, 51, 70] where the slots and slot values are constrained
by a knowledge domain (e.g. hotel domain) and database schema (e.g. tabu-
lar data). However, the current landscape of the field necessitates extending to
a multi-modal framework. Current models that claim to perform multi-modal
state tracking fall short in two major aspects: (1) Some works track the con-
stituents of only one modality to help the model focus on the most salient ones
within a multi-model context (e.g. video dialog [50], visual dialog [52], image re-
trieval [20], recommender systems [66]) rendering their state tracking approach
uni-modal. More recently, Le et al . [34] have proposed VDTN, which extended
the slot-filling paradigm to predict the visual attributes of CATER objects [19]
from a pool of pre-defined textual values, but their approach suffers from the
same aforementioned limitation. (2) Other works [1, 31, 49] have moved closer
to performing multi-modal state tracking but have been limited to synthetic
datasets that do not reflect the complexity of real-world scenarios.

We present MSTMIXER as a step towards addressing the aforementioned
limitations. Specifically, MSTMIXER uses a backbone VLM and attention-based
modality-specific tracking blocks to identify the most relevant constituents of
each modality. Then, it uses a multi-modal GNN-based approach to learn the
missing underlying structure between the mix of modalities in the form of latent
graphs. Finally, it uses the fine-grained GNN features to enhance the hidden
states of the backbone VLM to answer the question at hand more efficiently.
To summarize, the contributions of our work are three-fold: (1) We propose
MSTMIXER– a novel video dialog model that, unlike previous works, performs
multi-modal state tracking on each input modality separately. Our model is
generic by nature and could be easily adapted to deal with a wide range of tasks
and datasets. (2) We equip our model with a novel divide-and-conquer GNN-
based mechanism that dynamically learns the missing underlying structure of
the mix of all modalities. First, it selects the most important constituents of
each modality and learns their respective local structures using latent graphs.
Then, it parses all individual graphs and features into a global modality-agnostic
graph to further refine its structure and node features that we use to enhance
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the hidden states of the backbone VLM. (3) As seen in Figure 1, MSTMIXER sets
new state-of-the-art results across a broad range of video-language tasks.

2 Related Work

Video Dialog. Video dialog has emerged as a natural extension to visual ques-
tion answering [8], video question answering [69], and visual dialog [15]. Almari
et al . [4] proposed AVSD – one of the first video dialog datasets based on the
Charades videos [59], which has become the default dataset for the task. Later
works [35,45] achieved new state-of-the-art results by leveraging pre-trained large
language models [43, 56] and fine-tuning them on the downstream video dialog
task. Others used GNNs to perform reasoning on the dialog history [32] or on
the visual scene [27] in an attempt to improve performance. Pham et al . [55]
proposed an object-centric model to track object-associated dialog states upon
receiving new questions. Inspired by the success of neural module networks [6,7],
Le et al . [33] introduced VGNMN to model the information retrieval process in
video-grounded language tasks as a pipeline of neural modules. More recently,
Yoon et al . [73] introduced a text hallucination mitigation framework based on
a hallucination regularization loss.

Despite the high multi-modality of the task in general and the AVSD dataset
in particular, all previous works missed out on the idea of performing explicit
multi-modal dialog state tracking. Instead, they focused on general vanilla at-
tention methods that particularly tracked only one modality (mostly the visual
input) at the expense of the others. MSTMIXER closes this gap by performing
multi-modal state tracking on each input modality separately.

Dialog State Tracking. Traditional state tracking approaches predicted slot
values (e.g. meals offered by a restaurant) from a pre-defined set at each dialog,
which is conditioned on some context. As a result, these approaches remained
predominately uni-modal even though they were applied within a multi-modal
context (e.g., video dialog [50], visual dialog [52], image retrieval [20], recom-
mender systems [66]). However, the current landscape of dialog research neces-
sitates the transition to multi-modal dialog state tracking to cope with the com-
plexity of recent datasets. Some works have already been proposed to address
this problem. For example, SIMMC [31, 49] was introduced to develop agents
capable of helping a human in a shopping scenario and, therefore, need to track
the multi-modal state of the dialog to fulfill its task efficiently. More recently,
Le et al . [34] suggested performing video dialog state tracking by extending the
slot-filling task to predict predefined attributes of CATER [19] objects, limiting
their approach to only the DVD dataset [38].

As such, all of these works focused only on synthetic and automatically gen-
erated datasets. To the best of our knowledge, MSTMIXER is the first model to
perform genuine multi-modal state tracking in the wild for video dialog by being
able to deal with complex real-world scenarios.
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Fig. 2: MSTMIXER takes a video , a dialog history , and a question as input
and autoregressively generates an answer as output. It uses a BART backbone
adapted to deal with multi-modal input features and enhanced via our graph-based
mixing approach.

Graph Structure Learning. Early works on graph structure learning lever-
aged bilevel programming [14] to simultaneously learn GNN parameters and
topology [17]. Yu et al . [75] proposed applying the linear structure equation
model in conjunction with a variational autoencoder [57] to learn directed acyclic
graphs. Subsequently, Elinas et al . [16] suggested using a stochastic variational
inference model to jointly estimate the graph posterior and the GNN parameters.
Chen et al . [11] proposed iteratively refining the graph topology in an end-to-
end manner using graph similarity metric learning. Wu et al . [65] suggested an
all-pair message passing method to propagate signals between arbitrary nodes
for classification efficiently.

Our method differs from the aforementioned works in three distinct aspects:
(1) We propose a novel multi-modal graph structure learning method that relies
on a two-stage divide-and-conquer procedure that first predicts local modality-
specific latent graphs before tackling the global graph consisting of the mix of
all available modalities. (2) We use our graph learning approach to enhance the
hidden states of a backbone VLM. (3) Instead of dealing with uni-modal graph-
based tasks (node, edge, or graph classification), we investigate the effect of our
method on the multi-modal, non-graph-related downstream task of video dialog.

3 Method

3.1 Problem Formulation

Given a question Qt grounded on a video V at t-th dialog turn, a dialog history
Ht = {C, (Q1, A1), ..., (Qt-1, At-1)} composed of previous question-answer pairs
and a video caption C, a video dialog model is tasked of autoregressively gener-
ating a free-form answer At to the question at hand, i.e. each answer token ait
satisfies

ait = argmax
a∈V

[
P
(
a|V, Qt, Ht, A<i

t
)]

, (1)

where A<i
t and V denote the previously predicted answer tokens and the vocab-

ulary, respectively.
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3.2 Input Representation Learning

As can be seen from Figure 2, MSTMIXER is based on BART [43] and adapted
to handle data from multiple input modalities.

Visual Representations. As it is standard for this task, the visual repre-
sentations are extracted for a given video using I3D-rgb and I3D-flow mod-
els [10] pre-trained on YouTube videos and the Kinetics dataset [26]. Formally,
a video V is first split into lv segments using a sliding window of n frames.
Then, each segment S = {f1, f2, ..., fn}, where fi represents one video frame,
are fed to the pre-trained I3D models to extract the dv-dimensional video fea-
tures Vrgb, Vflow ∈ Rlv×dv . Finally, we extracted object features Vsam ∈ Rlv×ds

from the middle frame of the video using SAM [30]. We mapped these features
to match the hidden dimension d of BART using linear projections with weights
matrices Wrgb,Wflow,Wsam.

Audio Representations. Similar the previous works [32,45,73], we used audio
features extracted from a pre-trained VGGish model [60]. Since video and audio
are synchronous, the same splits were used to generate the da-dimensional audio
features Avggish ∈ Rlv×da . As for the video feature, we mapped the audio features
to the BART embedding space using a linear projection with a weight matrix
Wa ∈ Rd×da . We refer to [22] for further details about feature extraction.

Textual Representations. We used the dialog history composed of the video
caption, the previous question-answer pairs, and the current question as addi-
tional input to the encoder. We separated each segment with the special token
</s>. Subsequently, we embedded their concatenation into a dense representa-
tion T = [TH, TQ] ∈ Rltxt×d using a word embedding matrix Wtxt ∈ R|V|×d,
where ltxt, V, TH, and TQ are the length of the textual input, the vocabulary,
the dense representation of the history and question, respectively. Finally, we
input a shifted ground truth into the decoder and embed it using the same word
matrix.

State Tokens. We inserted special state tokens <si> at the beginning of each
modality (Vrgb, Vflow, Vsam, Avggish, TH, TQ) and used them to keep track of the
most relevant constituents.

3.3 MSTMIXER: Multi-Modal Feature Mixing

The main idea of MSTMIXER is to keep track of the most relevant constituents at
different semantic levels (e.g. across modalities and encoder layers) and use them
to refine the multi-modal state of the model. Specifically, we insert a MIXER
layer after every ∆ encoder layer. Our approach follows a two-stage divide and
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Fig. 3: In Stage I, MSTMIXER first gathers multi-modal features {Xi} from the pre-
vious BART layer and computes their respective initial local structures {ÃI}. Then,
it simultaneously learns the local latent multi-modal graphs and refines the features
using a two-stream framework, i.e., {A′

i,j , A
′′
i,j}j and {Z′

i,j , Z
′′
i,j}j , respectively. Finally,

it outputs the final multi-modal latent graph Ai used to compute the local ELBO loss
Llocal

ELBO = 1
N

∑N
i=1 L

local,i
ELBO.

conquer scheme where we first learn the underlying local structures of the in-
dividual modalities before learning the global inter-modal structure of the mix
of all available modalities. We posit that directly learning the latter might be
daunting for such a high multi-modal task.

Multi-Modal Feature Tracking. We take advantage of the special state to-
kens <si> to keep track of the most relevant modality-specific features at different
embedding levels of the encoder. Specifically, for each modality, we select the K
tokens with the highest attention values concerning the respective state token,
i.e.

Xi = topK(αavg(h<si>, Hi)) ∈ RK×d, (2)

where αavg(h<si>, Hi) is the attention values between the state embedding and
the remaining tokens embeddings Hi of the i−th modality averaged across heads.

Mixing Stage I (Divide). We posit that the selected features {Xi} of each
modality encapsulate rich information that could be leveraged to improve the
learning capabilities of our model. A viable approach is to take advantage of
the power of GNNs to refine these features based on their local structures, as
prior works have highlighted the merit of integrating GNNs with transformer-
based models [2, 71, 72]. However, the underlying structures that govern {Xi}
are missing in our case. To this end, we propose a novel multi-modal graph
structure learning approach that simultaneously learns the graph weights and
the adjacency matrix in the form of latent graphs. We posit that we can split
the adjacency matrix Ai of the i−th modality into an initial (observable) part
Ãi and a missing (sought-after) part A′

i where Ãi is a binary matrix constructed
using a kNN (k = 4) approach based on Xi. Thus,
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(a) We use the predicted local latent graphs {Ai} to initialize
Ã = diag([A1, .., AN ], 0) in order to learn the final global la-
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(b) We update the state embed-
dings h<si>

by averaging the
corresponding features from Z.

Fig. 4: Overview of mixing stage II.

P (Xi, Ai) = P (Ai|Xi)P (Xi) (3)

= P (A′
i, Ãi|Xi)P (Xi). (4)

Although the conditional distribution P (A′
i, Ãi|X) can be modeled by a para-

metric families of distributions piθ(A
′
i, Ãi|X), the optimal parameter set θ̄ is not

known making the computations of the marginal

piθ(Ãi|Xi) =

∫
piθ(A

′
i, Ãi|Xi)d(A

′
i) (5)

and therefore, the posterior of each modality

piθ(A
′
i|Ãi, Xi) =

piθ(A
′
i, Ãi|Xi)

piθ(Ãi|Xi)
(6)

intractable. To be able to infer the missing part of the local adjacency ma-
trix, we take advantage of Variational Inference (VI) to learn an approximation
qiϕ(A

′
i|Ãi, Xi) of the posterior. We postulate that the missing adjacency matrix

of modality i depends on its own features Xi and the features of other modalities
Xj ̸=i. Therefore, we propose a multi-modal conditioning (MMC) of Equation 6
on all Xj ̸=i in addition to Xi. We also follow the idea of [11] that better graph
structures lead to better features, and better features lead to better graph struc-
tures. Therefore, as shown in Figure 3, we use a two-stream approach where
one stream uses enhanced features to learn the latent multi-modal graphs, and
the other uses the predicted graphs to infer fine-grained features to learn both
qiϕ and piθ for each modality. Specifically, in the purple module of the upper
stream, we estimate an edge of latent graph A′

i,j using cosine similarity as

a′mn =
1

K

K∑
k=1

cos(wk
j ⊙ xm, wk

j ⊙ xn), (7)

where xm, xn ∈ Xi, {wk
j } are learnable weights for each modality, and ⊙ de-

notes element-wise multiplication. Then, in the green module, we update the
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multi-modal node features using an APPNP [18] module and the predicted latent
graphs for modality i to get {Z ′

i,j}j . For the lower stream, we first start by up-
dating the node features similarly to the upper stream by using the initial graphs
{Ãi} to get {Z ′′

i,j}j . Then, we use the enhanced node features {[Z ′
i,j , Z

′′
i,j ]}j to

predict the second set of local latent graphs {A′′
ij}j . At the end, we output the

final local latent graph of modality i as

Ai =
1

2
Ãi︸︷︷︸

Initialization Bias (IB)

+
1

2

N∑
j=1

1

N
(A′

i,j +A′′
i,j)︸ ︷︷ ︸

VI approximation via MMC

∈ RK×K . (8)

Mixing Stage II (Conquer). This stage tries to infer the global latent graph
structure governing the mix of all modalities {Xi}. As seen in Figure 4a, it
depends on the previously predicted local latent graphs to build the initial global
graphs as

Ã = diag([A1, .., AN ], 0) ∈ RNK×NK . (9)

Similar to Stage I, we use a two-stream approach to learn the global pθ and qϕ
and thus the global latent graph A and node features

Z =
1

2
(Z ′ + Z ′′), (10)

where Z ′ and Z ′′ are obtained from the upper and lower streams, respectively.
Finally, we update the state tokens embeddings h<si> by averaging the corre-
sponding features from Z (see Figure 4b) and integrate the latter back into the
hidden state of the corresponding BART layer following

H = (1− λ)(H ⊘ (Z, Idx)) + λH, (11)

where λ ∈ (0, 1) is a hyper-parameter and ⊘, H, and Idx denote the scatter
operation, the hidden state of the BART layer and the indices of the nodes
features Z relative to H, respectively.

Loss Function. Since we rely on VI to infer the local and global latent graphs,
we used two ELBO losses to optimize (1) the local multi-modal graph learners
{qiϕ, piθ} and (2) the global learners qϕ, pθ. Please refer to the supplementary
material for the derivation of these losses. We trained our model end-to-end
using a combination of the generative loss of the video dialog task Lgen and
both ELBO losses, i.e.

L = α1Lgen − α2Llocal
ELBO − α3Lglobal

ELBO, (12)

Llocal
ELBO =

1

N

N∑
i=1

Llocal,i
ELBO, (13)

where {αk} are hyper-parameters and Llocal,i
ELBO is the local ELBO loss for the i-th

modality.



MSTMIXER 9

Table 1: Results on AVSD-DSTC7 and AVSD-DSTC8. Best and second best perfor-
mances are in bold and underlined, respectively. ♠ = Two-stage training.

Model Venue AVSD-DSTC7 AVSD-DSTC8

B-1 B-2 B-3 B-4 M R C B-1 B-2 B-3 B-4 M R C

Baseline [22] ICASSP’19 62.1 48.0 37.9 30.5 21.7 48.1 73.3 61.4 46.7 36.5 28.9 21.0 48.0 65.1
MTN [36] ACL’19 71.5 58.1 47.6 39.2 26.9 55.9 106.6 − − − − − − −
JMAN [13] AAAI’20 66.7 52.1 41.3 33.4 23.9 53.3 94.1 64.5 50.4 40.2 32.4 23.2 52.1 87.5
VGD [35] ACL’20 74.9 62.0 52.0 43.6 28.2 58.2 119.4 − − − − − − −
BiST [37] EMNLP’20 75.5 61.9 51.0 42.9 28.4 58.1 119.2 68.4 54.8 45.7 37.6 27.3 56.3 101.7

SCGA [27] AAAI’21 74.5 62.2 51.7 43.0 28.5 57.8 120.1 71.1 59.3 49.7 41.6 27.6 56.6 112.3
RLM [45] TASLP’21 76.5 64.3 54.3 45.9 29.4 60.6 130.8 74.6 62.6 52.8 44.5 28.6 59.8 124.0
PDC [32] ICLR’21 77.0 65.3 53.9 44.9 29.2 60.6 129.5 74.9 62.9 52.8 43.9 28.5 59.2 120.1

AV-TRN [58] ICASSP’22 − − − 40.6 26.2 55.4 107.9 − − − 39.4 25.0 54.5 99.7
VGNMN [33] NAACL’22 − − − 42.9 27.8 57.8 118.8 − − − − − − −
COST [55] ECCV’22 72.3 58.9 48.3 40.0 26.6 56.1 108.5 69.5 55.9 46.5 3.82 27.8 57.4 105.1
MRLV [3] NeurIPS’22 − 59.2 49.3 41.5 26.9 56.9 115.9 − − − − − − −
♠THAM [73] EMNLP’22 77.8 65.4 54.9 46.8 30.8 61.9 133.5 76.4 64.1 53.8 45.5 30.1 61.0 130.4

DialogMCF [12] TASLP’23 77.7 65.3 54.7 45.7 30.6 61.3 135.2 75.6 63.3 53.2 44.9 29.3 60.1 125.3
ITR [76] PAMI’23 78.2 65.5 55.2 46.9 30.5 61.9 133.1 76.2 64.1 54.3 46.0 29.8 60.7 128.5

MSTMIXER 78.7 66.5 56.3 47.6 31.3 62.5 138.8 77.5 66.0 56.1 47.7 30.6 62.4 135.4
w/o Vsam ECCV’24 78.6 66.3 56.0 47.4 31.2 62.2 137.3 77.4 65.8 56.0 47.3 30.6 62.1 134.8
w/o Avggish 78.4 66.0 55.8 47.1 31.0 62.0 136.5 77.1 65.6 55.7 47.1 30.2 61.8 133.6

4 Experiments

4.1 Datasets

We mainly evaluated our model on the popular and challenging Audio-Visual
Scene Aware Dialog (AVSD) dataset [4]. Each of its dialogs comes with 10
question-answer pairs as well as a short description/caption based on a video.
Each video is collected from the Charades dataset [59] and the dialogs are gener-
ated by human annotators. We considered all three benchmarks of the dataset,
i.e. AVSD-DSTC7 [74], AVSD-DSTC8 [28], and AVSD-DSTC10 [58], which were
respectively released for the Dialog System Technology Challenge (DSTC). To
assess the generalizability of our model, we not only experimented with the
generative task of SIMMC 2.0 [31] but also with the recent and challenging
open-ended video question answering NExT-QA dataset [67]. We refer to the
supplementary material for more details about all five benchmarks.

4.2 Metrics

We used the established official metrics for each dataset in order to fairly compare
MSTMIXER with the previous models. Specifically, for all three AVSD datasets,
we used BLEU (B-n) [53], ROUGE-L (R) [46], METEOR (M) [9], and CIDEr
(C) [62]. Whereas for SIMMC and NExT-QA, we used B-4 and WUPS [48]
scores, respectively.

https://github.com/dialogtekgeek/DSTC8-AVSD_official
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Table 2: Results on AVSD-DSTC10.

Model Venue B-1 B-2 B-3 B-4 M R C

AV-TRN [58] ICASSP’22 − − − 24.7 19.1 43.7 56.6
+ Ext. [58] ICASSP’22 − − − 37.1 24.5 53.5 86.9

DSTC10 [23] AAAI’22 67.3 54.5 44.8 37.2 24.3 53.0 91.2
DialogMCF [12] TASLP’23 69.3 55.6 45.0 36.9 24.9 53.6 91.2

MSTMIXER 70.0 57.4 47.6 40.0 25.7 54.5 99.8
w/o Vsam ECCV’24 69.8 57.4 47.5 39.8 25.6 54.3 97.6
w/o Avggish 69.7 57.1 47.2 39.5 25.1 54.0 96.9

Table 3: Results on SIMMC.

Model Venue B-4

MTN [36] ACL’19 21.7
GPT-2 [31] EMNLP’21 19.2
BART [41] NAACL’22 33.1
PaCE [44] ACL’23 34.1

MSTMIXER ECCV’24 44.7

Table 4: Results on open-ended NExT-QA♢.

Model Venue WUPSC WUPST WUPSD WUPS

HCRN [40] CVPR’20 16.05 17.68 49.78 23.92
HGA [24] AAAI’20 17.98 17.95 50.84 24.06
Flamingo [5] NeurIPS’22 − − − 28.40
KcGA [25] AAAI’23 − − − 28.20
EMU [61] arXiv’23 − − − 23.40

MSTMIXER ECCV’24 22.12 22.20 55.64 29.50

4.3 Main Results

AVSD-DSTC7. As can be seen in Table 1, our model managed to achieve
new SOTA results across all evaluation metrics, thereby outperforming the lat-
est baselines, including PDC [32], DialogMCF [12], THAM [73], and ITR [76].
Specifically, MSTMIXER outperformed the latest ITR [76] model by over 1.5%
(relative improvement) on B-2, B-3, B-4, and M scores. Since some previous
models did not use SAM [30] and audio features, we trained two additional ver-
sions of our model where we only removed SAM features before additionally
removing the audio features. Both versions are denoted by “w/o Vsam” and “w/o
Avggish”, respectively. As seen from Table 1, both versions still outperform all
previous models across all evaluation metrics.

AVSD-DSTC8. As depicted in Table 1, models tend to struggle more on this
more recent benchmark. However, MSTMIXER scored new SOTA results with
higher relative improvements compared to DSTC7, thereby lifting the B-2, B-3,
B-4, and C scores by over 3% relative to the second best models ITR [76] and
THAM [73]. Similarly to AVSD-DSTC7, our ablated versions surpassed these
models on all evaluation metrics and marginally underperformed our full model.

AVSD-DSTC10. We then evaluated MSTMIXER on the latest AVSD-DSTC10
benchmark. Contrary to the previous versions, AVSD-DSTC10 does not include
human-generated video descriptions during inference since these are unavailable
in real-world applications. As depicted in Table 2, models struggle the most on

♢ C, T, and D denote causal, temporal, and descriptive questions, respectively.
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Table 5: Influence of the value of λ.

λ PPL AVSD-DSTC7 AVSD-DSTC8

(val) B-4 R C B-4 R C

0.0 Training unstable
0.1 11.03 17.3 29.0 35.1 11.4 24.3 21.2
0.5 5.48 44.6 60.3 126.4 44.7 59.4 123.8
0.9 5.16 47.6 62.5 138.8 47.7 62.4 135.4
1.0 5.30 45.1 60.8 131.3 42.3 61.1 126.9

Table 6: Influence of the value of ∆.

∆ PPL AVSD-DSTC7 AVSD-DSTC8

(val) B-4 R C B-4 R C

≤ 2 Training too long
3 5.19 45.7 61.5 134.1 46.7 61.5 131.8
4 5.16 47.6 62.5 138.8 47.7 62.4 135.4
5 5.21 45.0 61.1 133.6 44.6 60.5 129.1

this challenge version. However, not only our full MSTMIXER model but also its
two ablated versions managed to outperform the latest models on all evaluation
metrics.

♣SIMMC. To assess the generalizability of our model, we additionally tested
it on the generative task of SIMMC 2.0 [49]. As seen from Table 3, MSTMIXER
outperformed the latest published models such as PaCE [44] by achieving a B-4
score of 44.7.

♣NExT-QA. Finally, we tested our model on the recent open-ended NExT-
QA benchmark [67]. As depicted in Table 4, MSTMIXER not only outperformed
HCRN [40] and HGA [24] on all WUPS scores [48] but also surpassed latest
models such as Flamingo [5], KcGA [25], and EMU [61]. Specifically, it lifted the
overall WUPS score by 1.1 absolute points compared to the seminal Flamingo-9B
model with x18 more parameters.

4.4 Ablation Study

Effect of λ and ∆. We independently optimized these hyper-parameters based
on the validation perplexity (PPL). First, we fixed ∆ = 4 to guarantee a rea-
sonable training time on our hardware setup and varied λ ∈ {0, 0.1, 0.5, 0.9, 1}.
As seen in Table 5, the best performance was achieved when using λ = 0.9.
Thereafter, we varied ∆ ∈ {2, 3, 4, 5} while keeping λ = 0.9 and achieved the
best results for ∆ = 4 as can be seen from Table 6.

Latent Graph Size K. As illustrated in the first section of Table 7, we varied
K from 7 to 16 in three-step intervals. The overall performance of MSTMIXER
peaked when using K = 10 tokens from each modality as the graphs’ node
features. Using higher values of K rendered the learning of the global latent
graphs with K ×N nodes more difficult and thus hurt the overall performance
of our model. This is underlined by the behavior of the global ELBO loss Lglobal

ELBO
as illustrated in Figure 5a. Using K = 7 hurt the performance of our model across
almost all metrics. We posit that low values of K are insufficient to capture each
modality’s most influential constituents. Therefore, we set K = 10 in the rest of
the experiments.

♣: Models trained with optimal hyperparameters from AVSD and without Vsam.
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Fig. 5: a) Larger values of K make the learning of the global latent graphs more
challenging. b) The local ELBO loss Llocal

ELBO facilitates the learning of the global latent
graphs. c) The global ELBO loss Lglobal

ELBO facilitates the learning of the local latent
graphs. All models use SAM and audio features.

Multi-Modal State Tracking GNNs. In each row of the middle section of
Table 7, we ablated one GNN-based tracking module and kept the remaining
ones unchanged. Our full model outperformed all these ablated versions despite
them having access to the same input features. The comparable results of all these
ablated versions validate using a uniform graph size K for all different modal-
ities. Finally, we replaced all GNNs (local and global) with vanilla transformer
layers. As can be seen from the last row of the middle section, this version was
outperformed by our full model as well, underlining the efficacy of our proposed
multi-modal graph learning approach.

ELBO Losses. As can be seen in the third section of Table 7, we conducted
extensive experiments with different combinations of the ELBO losses: (1) We
first ablated the learning of both global and local latent graphs and, therefore,
both ELBO losses resulting in a plain BART model [43]. (2) We then only used
the initial graphs Ãi as the final latent graph approximations in both training
stages I and II leading to improvements compared to plain BART. (3) There-
after, we ablated the local ELBO loss and directly learned the global latent
graphs. This version of our model underperformed BART, which follows our hy-
pothesis that directly learning the global latent graphs is daunting and might
lead to performance drops. As illustrated in Figure 5b, Lglobal

ELBO converged faster
and reached lower values when optimized jointly with Llocal

ELBO. (4) We thereafter
ablated the global ELBO loss and only learned the local latent graphs, leading to
performance increases compared to the previous versions. This underlines that
learning the local latent graphs is less sensitive to Lglobal

ELBO than learning the global
latent graphs is to Llocal

ELBO as can be seen in Figure 5c. (5) We finally evaluated a
version with a comparable computational complexity as our full model but used
random latent graphs instead of learning them. As can be seen in Figure 5b,
Figure 5c, and the last row of Table 7), both ELBO losses remained constant
and the model reached the worst results among all ablated versions empirically
showcasing the importance of our latent graph learning approach.
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Table 7: Comparison between different ablated versions of our model. All ablations
use SAM and audio features. TRN means that the model replaces the global and local
multi-modal GNNs with vanilla transformer layers, and RAND denotes that it uses
random latent graphs instead of learning them. Our full model is highlighted in blue .

K GNNs Llocal
ELBO Lglobal

ELBO # Params. AVSD-DSTC7 AVSD-DSTC8

B-1 B-4 R C B-1 B-4 R C

7 All ✓ ✓ ∼ 511M 77.8 47.0 61.8 136.2 76.6 47.0 61.5 131.8
10 All ✓ ✓ ∼ 511M 78.7 47.6 62.5 138.8 77.5 47.7 62.4 135.4
13 All ✓ ✓ ∼ 511M 77.0 45.4 60.6 131.9 75.7 45.2 60.4 127.0
16 All ✓ ✓ ∼ 511M 76.6 45.4 60.7 132.6 75.8 45.9 60.5 128.4

10 w/o GNNrgb ✓ ✓ ∼ 495M 78.4 47.2 62.4 137.2 77.3 47.4 62.0 133.2
10 w/o GNNflow ✓ ✓ ∼ 495M 78.5 47.1 62.5 138.5 76.9 47.2 61.9 134.1
10 w/o GNNsam ✓ ✓ ∼ 495M 78.1 46.1 62.2 137.2 77.5 46.5 61.7 132.7
10 w/o GNNvggish ✓ ✓ ∼ 495M 78.0 45.8 61.4 134.9 76.8 46.5 61.0 131.0
10 w/o GNNH ✓ ✓ ∼ 495M 78.1 45.7 61.8 134.1 77.4 46.7 62.2 134.0
10 w/o GNNQ ✓ ✓ ∼ 495M 78.2 47.1 62.1 138.5 77.0 47.0 61.8 133.6
10 TRN ✗ ✗ ∼ 500M 77.8 46.9 61.8 136.6 76.8 46.7 61.4 131.8

− − ✗ ✗ ∼ 411M 76.6 45.1 60.8 131.3 74.2 42.3 61.1 126.9

− w/ only Ãi ✗ ✗ ∼ 413M 76.5 45.4 60.9 131.7 75.2 45.5 60.7 130.3
10 All ✗ ✓ ∼ 416M 75.9 44.5 59.8 127.8 74.3 44.2 59.2 122.8
10 All ✓ ✗ ∼ 506M 77.5 46.4 61.4 134.9 76.2 46.6 60.9 130.6
10 All RAND RAND ∼ 448M 73.0 42.1 57.3 119.2 71.4 41.6 57.1 114.2

Table 8: Comparison between different ablated versions of our model. All ablations
were trained with SAM and audio features and with the optimal hyper-parameters as
the full model. IB = Initialization Bias, MMC = Multi-Modal Conditioning.

MSTMIXER # Params. AVSD-DSTC7 AVSD-DSTC8

B-1 B-4 R C B-1 B-4 R C

w/o MMC ∼ 500M 76.9 46.6 61.4 135.5 75.8 46.1 60.5 130.9
w/o IB ∼ 511M 77.6 47.0 61.8 136.2 76.3 46.2 61.2 131.1

Full ∼ 511M 78.7 47.6 62.5 138.8 77.5 47.7 62.4 135.4

Latent Graph Learning. Lastly, we considered two additional ablations of
MSTMIXER. Specifically, we first ablated the multi-modal conditioning (MMC)
of Equation 6 and learned the local latent graphs of modality i based only on
its features Xi. This reduces Equation 8 to

Ai =
1

2
Ãi +

1

2
(A′

i +A′′
i ). (14)

Then, we trained a version without the initialization bias (IB) of Equation 8.
As can be seen in Table 8, MMC is essential for high performance. Without it
MSTMIXER achieved the lowest performance across all metrics. The same applies
to IB since not incorporating Ãi and only using the posterior approximation
impeded the performance across all evaluation metrics.
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Fig. 6: Qualitative comparison of different model ablations. on response gen-
eration and latent global graph inference of qϕ obtained from the last en-
coder layer. The diagonal blocks (from upper left to lower right) correspond to
Vrgb, Vflow, Vsam, Avggish, TH, and TQ, respectively.

4.5 Qualitative Results

Finally, in Figure 6 we give a qualitative comparison of MSTMIXER with different
ablated versions on response generation and global latent graph inference: Our
full model managed to accurately answer the question whereas both ablated
version failed to generate reliable responses. Furthermore, we can see how our
full model better captured the local interactions within each modality (more
structured diagonal blocks) as well as the global ones across modalities: Whereas
the off-diagonal region (bordered in red) of the version “w/o Llocal

ELBO” showed a
clear divide between the modalities (dotted line), the full model mitigated this by
producing more homogeneous values indicating better inter-modal interactions.
We provide more examples and failure cases in the supplementary material.

5 Conclusion

We proposed MSTMIXER– a novel multi-modal state tracking model specifically
geared towards video dialog. MSTMIXER first identifies the most influential con-
stituents at different semantic levels (e.g., across modalities and encoder layers).
Then, it relies on a two-stage divide and conquer approach to infer the missing
underlying structure of the mix of all modalities and leverages it to augment the
hidden states of the backbone VLM using GNNs. Through extensive ablations
experiments and evaluations on five video-and-language benchmarks, we show
our approach’s effectiveness and generalization capabilities.
Acknowledgments. L. Shi was funded by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) under Germany’s Excellence Strat-
egy – EXC 2075–390740016.
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A ELBO Derivation & Implementation

In this section, we derive the ELBO loss and show how it can be used as an opti-
mization term in our total loss. Without the loss of generality, we only consider
the ELBO in the global setting. Given the intractable posterior pθ(A′|Ã,X) and
the its approximation qϕ(A

′|Ã,X), it holds that

DKL

(
qϕ(A

′|Ã,X)||pθ(A′|Ã,X)
)
= Eqϕ(A′|Ã,X)

[
log

qϕ(A
′|Ã,X)

pθ(A′|Ã,X)

]
(15)

= Eqϕ(A′|Ã,X)

[
log

qϕ(A
′|Ã,X)pθ(Ã|X)

pθ(A′, Ã|X)

]
(16)

= Eqϕ(A′|Ã,X)

[
log

qϕ(A
′|Ã,X)

pθ(A′, Ã|X)

]
+ pθ(Ã|X) (17)

= pθ(Ã|X)︸ ︷︷ ︸
Evidence

−Eqϕ(A′|Ã,X)

[
log

pθ(A
′, Ã|X)

qϕ(A′|Ã,X)

]
︸ ︷︷ ︸

=:Lglobal
ELBO

≥ 0 (18)

Thus, as its name suggests, ELBO serves as a lower bound of the evidence. As
a results, VI tries to maximize the ELBO which is equivalent to minimizing the
Kullback-Leibner Divergence between qϕ(A

′|Ã,X) and the intractable posterior
pθ(A

′|Ã,X) leading to better estimation of the latter. Since we used the ELBOs
as terms in the total loss L to be minimized, we had to use the opposite value of
each one of them. This explains the minus sign in Equation 12 in the main text.
Since qϕ and pθ only output normalized scores as the prediction for each edge,
we appended the zero vectors to both predictions in order to convert the raw
scores to a two-value probability before applying the log-softmax function. We
provide in Listing 1.1 a code-snippet of our implementation of the ELBO loss.

B Generative Loss

In addition to the ELBO losses, we used the generative loss Lgen to train our
model. It employs teacher forcing and teaches the BART decoder to predict
the next response token ŷj+1 conditioned on the previous ground-truth response
tokens Yj = [y1, ..., yj ] and the output of the encoder Henc. Specifically, the next
predicted token satisfies

ŷj+1 = argmax
y∈V

[logP (y|Yj , Henc)] , (19)

where V and P denote the vocabulary and the softmax of the logits of the last
decoder layer, respectively.
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Table 9: Summary of the AVSD dataset with all test splits from DSTC7, DSTC8, and
DSTC10.

Train Val Test

DSTC7 DSTC8 DSTC10

# Dialogs/Videos 7, 659 1, 787 1, 710 1, 710 1, 804
# Questions/Answers 153, 180 35, 740 13, 490 18, 810 28, 406
# Words 1, 450, 754 339, 006 110, 252 162, 226 272, 606

Table 10: Summary of the open-ended NExT-QA dataset.

Train Val Test

# Videos 3, 870 570 1, 000
# Questions 37, 523 5, 343 9, 178

C Datasets

C.1 AVSD

The AVSD dataset [4] was released in the 7th Dialogue System Technology
Challenge (DSTC7) [74]. As can be seen from Table 9, it contains 7, 659, 1, 787,
and 1, 710 dialogs for training, validation and testing, respectively. The data for
DSTC8 [28] and DSTC10 [58] were only released with 1, 710 and 1, 804 dialogs for
testing, respectively. For all testing splits, six human-generated reference answers
were provided for each dialog in order to compute the generation metrics.

C.2 SIMMC2.0

SIMMC 2.0 [31] is a task-oriented dataset that was proposed for virtual assis-
tance scenarios and contains 11k dialogs with 52, 044 unique questions grounded
in 5, 440 videos from the shopping domain. Its visual and textual data were au-
tomatically generated in constrained and pre-defined settings resulting in less
complex and challenging scenes compared to AVSD. As can be seen in Figure 7,
AVSD features a larger variety of objects that humans interact with daily, more
complex dynamics, and more challenging illumination conditions. On the other
hand, SIMMC 2.0 only comes with simple items linked to the shopping domain.

C.3 NExT-QA

NExT-QA [67] was recently introduced as a next generation video question an-
swering benchmark that was introduced to advance video understanding from
describing to explaining the temporal actions. Table 10 gives more insight about
the statistics of the dataset.
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Fig. 7: Comparison between the visual complexity of AVSD (a) and SIMMC 2.0 (b).
For ethical reasons, we blurred the faces of people appearing in the video frames.

a) b)

D Experimental Setup

D.1 Hardware & Environment

We implemented our model in PyTorch [54] and trained them on a cluster con-
sisting of 8 Nvidia Tesla V100 (32GB) GPUs, 2 Intel(R) Xeon(R) Platinum 8160
CPUs, and 1.5TB of RAM.

D.2 Training

We trained MSTMIXER end-to-end using AdamW [47] with β1 = 0.9, β2 = 0.999,
and ϵ = 1e−8 and a linear learning rate schedule with warm-up for a maximum
of 12 epochs. We utilized a learning rate lrBART = 1e− 5 for the weights of the
BART model and a learning rate lrrest = 1e− 4 for the rest of the parameters of
our model. Similarly to λ and ∆, we validated the choice of the ELBO loss coef-
ficients α2 and α3 based on the validation perplexity. Specifically, we performed
a grid search using the value set {1, 10, 100, 1000} while keeping λ = 0.9, ∆ = 4,
and K = 10. The training of our full model takes approximately 20 hours to
finish. Complete details about the hyperparameter values are listed in Table 12.

D.3 Inference

Similar to previous works, we utilized beam search with a depth of 5 and a
lengths penalty of 0.3 to generate the answers. Each answer is composed of at
most 20 tokens. The inference time of our model takes about 2s to answer one
question.

E Additional Ablations

GNN Types. We experimented with different types of GNNs within our full
model. As depicted in Table 11a, the combination of MSTMIXER with APPNP
[18] led to the best overall performance compared to other GNNs such as GAT
[63], GCN [29], and SAGE [21].
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Table 11: Additional ablations of MSTMIXER.

(a) Performance comparison of our best model
using different GNN types.

MSTMIXER
AVSD-DSTC7 AVSD-DSTC8

B-4 R C B-4 R C

w/ GAT 46.7 61.5 135.4 46.5 60.9 129.4
w/ GCN 46.6 61.9 136.7 46.7 61.6 131.6
w/ SAGE 46.0 61.2 133.4 45.8 60.9 129.3
w/ APPNP 47.6 62.5 138.8 47.7 62.3 134.9

(b) Performance comparison between differ-
ent model sizes. “Base” and “Large” mean that
MSTMIXER uses a base or a large backbone, re-
spectively.

MSTMIXER
AVSD-DSTC7 AVSD-DSTC8

B-4 R C B-4 R C

Base (∆ = 2) 39.8 60.0 113.9 40.1 55.4 110.2
Large (∆ = 4) 47.6 62.5 138.8 46.7 61.6 131.6

Mode Size. Moreover, we experimented with different sizes our model. As de-
picted in Table 11b, the variant of MSTMIXER that is based on BART-base
significantly under-performed the large variant across all evaluation metrics of
both datasets.

F Qualitative Results

We provide additional extensive qualitative examples of our best model and some
of its ablated versions for comparison in Figure 8. Finally, we give some failure
cases in Figure 9.

References

1. Abdessaied, A., Hochmeister, M., Bulling, A.: OLViT: Multi-modal state tracking
via attention-based embeddings for video-grounded dialog. In: LREC-COLING
(2024) 2

2. Abdessaied, A., Shi, L., Bulling, A.: VD-GR: Boosting Visual Dialog With Cas-
caded Spatial-Temporal Multi-Modal Graphs. In: WACV (2024) 6

3. Alamri, H., Bilic, A., Hu, M., Beedu, A., Essa, I.: End-to-end multimodal repre-
sentation learning for video dialog. In: NeurIPS (2022) 9

4. Alamri, H., Cartillier, V., Das, A., Wang, J., Cherian, A., Essa, I., Batra, D.,
Marks, T.K., Hori, C., Anderson, P., et al.: Audio visual scene-aware dialog. In:
CVPR (2019) 3, 9, 16

5. Alayrac, J.B., Donahue, J., Luc, P., Miech, A., Barr, I., Hasson, Y., Lenc, K.,
Mensch, A., Millican, K., Reynolds, M., Ring, R., Rutherford, E., Cabi, S., Han,
T., Gong, Z., Samangooei, S., Monteiro, M., Menick, J., Borgeaud, S., Brock, A.,
Nematzadeh, A., Sharifzadeh, S., Binkowski, M., Barreira, R., Vinyals, O., Zisser-
man, A., Simonyan, K.: Flamingo: a visual language model for few-shot learning.
In: NeurIPS (2022) 10, 11

6. Andreas, J., Rohrbach, M., Darrell, T., Klein, D.: Deep compositional question
answering with neural module networks. In: CVPR (2016) 3

7. Andreas, J., Rohrbach, M., Darrell, T., Klein, D.: Learning to compose neural
networks for question answering. In: NAACL (2016) 3

8. Antol, S., Agrawal, A., Lu, J., Mitchell, M., Batra, D., Zitnick, C.L., Parikh, D.:
VQA: Visual Question Answering. In: ICCV (2015) 2, 3



MSTMIXER 19

Table 12: Detailed hyperparameter setting of the training and inference of our best
MSTMIXER model.

Category Hyperparameter

Model Architecture

Dimension of I3D rgb / I3D flow / SAM features dv 2048
Dimension of SAM features ds 512
Maximum length of I3D rgb / I3D flow / SAM features dl 36
Dimension of audio features da 128
Maximum length of audio features la = lv 36
Maximum total length of multi-modal input 1024
Dimension of hidden features d 1024/768
Number of node features in local GNNs K 10
Number of node features in local GNNs K 10

Number for kNNs in {Ãi} 4
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1 # ---------------------------------
2 # Implementation of the ELBO loss
3 # ---------------------------------
4 import torch
5 import torch.nn as nn
6 import torch.nn.functional as F
7

8 class ELBO(nn.Module):
9 def __init__(self):

10 super(ELBO , self).__init__ ()
11

12 def forward(self , Aq , Ap):
13 """
14 Args:
15 Aq: The predicted latent graph of q_phi
16 shape = (batch_size , K, K) -- local graphs
17 shape = (batch_size , NK , NK) -- global graphs
18

19 Ap: The predicted latent graph of p_theta
20 shape = (batch_size , K, K) -- local graphs
21 shape = (batch_size , NK , NK) -- global graphs
22

23 Returns:
24 The ELBO loss
25 """
26 Aq_flat = Aq.view(-1).unsqueeze (-1)
27 Ap_flat = Ap.view(-1).unsqueeze (-1)
28

29 Aq_flat = torch.cat(
30 [torch.zeros_like(Aq_flat), Aq_flat], dim=-1)
31 Ap_flat = torch.cat(
32 [torch.zeros_like(Ap_flat), Ap_flat], dim=-1)
33

34 log_Aq = F.log_softmax(QA_flattened , dim =1)
35 log_Ap = F.log_softmax(PA_flattened , dim =1)
36

37 Aq_dist = torch.exp(log_Aq)
38

39 loss_Aq = torch.mean(log_Aq * Aq_dist)
40 loss_Ap = torch.mean(log_Ap * Aq_dist)
41

42 elbo_loss = loss_Aq - loss_Ap
43

44 return elbo_loss
45

Listing 1.1: PyTorch implementation of the ELBO loss. Since qϕ and pθ only output
normalized scores as the prediction for each edge, we append the zero vectors to both
predictions in lines 29-30 to convert the raw scores to a two-value probability before
applying softmax.
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0.6

0.7

0.8

0.9C: A guy is sweeping the floor when he decides to go

into the hallway a retrieve 2 pairs of shoes to put into

the washing machine.

A1: It looks like a male to me.Q1: What is the gender ?

Q10:

: He did not do anything else before that (B-4 = 70.71)

: He was sweeping the floor (B-4 = 2.23e-10)

Video

Dialog History

Predictions

Latent Global Graphs 

Question
..
.

w/o

(Rand): He went to the sink with his shoes (B-4 = 8.78e-7)

w/o
Anything else before that?

(a) Dialog with video-id = 3A9IC.

..
.

A1: Yes the man is typing at the computer.

(Rand)

Q1: Is the man typing on the computer?

:

: Yes, he is talking on the phone (B-4 = 86.68)

:No, he does not talk at all (B-4 = 9.05e-11) 

Video

Q4

Dialog History

Predictions

Latent Global Graphs 

Question

w/o

(Rand): No, he does not talk at all (B-4 = 9.05e-11) 

w/oDoes he talk after picking it up?

C: a man is sitting on top of his bed, typing on his 
laptop computer [...] He continues typing on the laptop
even while talking on the phone.
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(b) Dialog with video-id = 2EW71.

..
.

A1: It starts with a man cleaning a window with a rag.

(Rand)

Q1: How does the video start?

:

: Yes there is sound in the video (B-4 = 99.99)

: No there is no sound (B-4 = 9.05e-7)

Video

Q7

Dialog History

Predictions

Latent Global Graphs 

Question

w/o

(Rand): No there is no sound (B-4 = 9.05e-7)

w/oIs there sound ?

C: A person is cleaning a window with a rag. Then,
puts the rag down, takes the blankets off the bed and
sits on the bed as they stare out the window.
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(c) Dialog with video-id = K2XKT.

..
.

A1: One person is in the video.

(Rand)

Q1: How many people are in the video?

:

: Yes he does exit the filming area (B-4 = 80.91)

: No he does not exit the filming area (B-4 = 41.11)

Video

Q9

Dialog History

Predictions

Latent Global Graphs 

Question

w/o

(Rand): No he does not exit the room (B-4 = 9.87e-7) 

w/oDoes he exit the filming area?

C: A man stands in a room while eating something

and watching tv. He then picks up a plate and slams

it to the floor.
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(d) Dialog with video-id = UO7PC. Although the ablated version (MSTMIXERw/o Llocal
ELBO) reached

a BLEU-4 score of 41.11, it incorrectly answered the question since the person did leave the filming
area as can be seen from the last frames of the video.

Fig. 8: Qualitative results on data samples form the test split of AVSD-DSTC7. For
ethical reasons, we blurred the faces of people appearing in the video frames.
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A1: A man is sitting then wakes up.

(Rand)

Q1: What is happening?

:

: Yes the video is set in the bedroom (B-4 = 69.14)

: Yes it is in the bedroom (B-4 = 99.99)

Video

Q2
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Predictions

Latent Global Graphs 

Question

w/o

(Rand): Yes it is in the bedroom (B-4 = 99.99)

w/oIs the video set in the bedroom?

C: A man sits in a chair next to a bed with his head 
on his shoulder . [...] he raises his head and stands up.
[...] then picks up a cup and drinks from it .
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(a) Dialog with video-id = 3DR7T.

..
.

A1: A man is sitting in a doorway watching tv behind

him.

(Rand)

Q1: What happens at the start of the video?

:

: Yes he does drink from the cup (B-4 = 42.38)

: No he does not drink from the cup (B-4 = 99.99)

Video

Q2

Dialog History

Predictions

Latent Global Graphs 

Question

w/o

(Rand): no he does not drink from the cup (B-4 = 99.99)

w/oDoes he drink from the cup at all?

C: A man sits in a doorway watching tv in the room

behind him. He puts several cups on a table and fills

one with a metal pitcher.
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(b) Dialog with video-id = HKGAX.

..
.

A1: A young man is watching tv.

(Rand)

Q1: What is happening in this video?

:

: I can't tell what is on the tv. (B-4 = 9.87e-7)

: He is watching tv (B-4 = 6.38e-3)

Video

Q2

Dialog History

Predictions

Latent Global Graphs 

Question

w/o

(Rand): He is watching tv (B-4 = 6.38e-3)

w/oWhat is he watching on tv ?

C: A man is watching tv as he grabs a piece of bread

and takes a bite. He grabs a cup and drinks from it as 

he continues to watch tv.
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(c) Dialog with video-id = 1K4NH.

..
.

A1: It is just this one man.

(Rand)

Q1: How many people are in the video ?

:

: It looks like a living room (B-4 = 4.95e-3)

: It looks like a living room (B-4 = 4.95e-3)

Video

Q2

Dialog History

Predictions

Latent Global Graphs 

Question

w/o

(Rand): It looks like a living room (B-4 = 4.95e-3)

w/oWhat sort of room are they in?

C: A man with an orange shoebox [...]. He then reaches

to the side to grab a pair of jeans. He places the jeans 

inside of the shoebox, closes it, and walks away.
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(d) Dialog with video-id = 36QP8.

Fig. 9: Negative qualitative results on data samples form the test split of AVSD-
DSTC7. For ethical reasons, we blurred the faces of people appearing in the video
frames.
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